Found problems: 6530
2005 Vietnam Team Selection Test, 1
Let be given positive reals $a$, $b$, $c$. Prove that: $\frac{a^{3}}{\left(a+b\right)^{3}}+\frac{b^{3}}{\left(b+c\right)^{3}}+\frac{c^{3}}{\left(c+a\right)^{3}}\geq \frac{3}{8}$.
2011 Romania National Olympiad, 1
Find all real numbers $x, y,z,t \in [0, \infty)$ so that
$$x + y + z \le t, \,\,\, x^2 + y^2 + z^2 \ge t \,\,\, and \,\,\,x^3 + y^3 + z^3 \le t.$$
1973 IMO Shortlist, 3
Prove that the sum of an odd number of vectors of length 1, of common origin $O$ and all situated in the same semi-plane determined by a straight line which goes through $O,$ is at least 1.
2006 IMO, 3
Determine the least real number $M$ such that the inequality \[|ab(a^{2}-b^{2})+bc(b^{2}-c^{2})+ca(c^{2}-a^{2})| \leq M(a^{2}+b^{2}+c^{2})^{2}\] holds for all real numbers $a$, $b$ and $c$.
1994 AIME Problems, 12
A fenced, rectangular field measures 24 meters by 52 meters. An agricultural researcher has 1994 meters of fence that can be used for internal fencing to partition the field into congruent, square test plots. The entire field must be partitioned, and the sides of the squares must be parallel to the edges of the field. What is the largest number of square test plots into which the field can be partitioned using all or some of the 1994 meters of fence?
2018 Irish Math Olympiad, 7
Let $a, b, c$ be the side lengths of a triangle. Prove that $2 (a^3 + b^3 + c^3) < (a + b + c) (a^2 + b^2 + c^2) \le 3 (a^3 + b^3 + c^3)$
2019 Jozsef Wildt International Math Competition, W. 12
If $0 < a < b$ then: $$\frac{\int \limits^{\frac{a+b}{2}}_{a}\left(\tan^{-1}t\right)dt}{\int \limits_{a}^{b}\left(\tan^{-1}t\right)dt}<\frac{1}{2}$$
2023 Romania National Olympiad, 1
We consider real positive numbers $a,b,c$ such that $a + b + c = 3.$
Prove that $a^2 + b^2 + c^2 + a^2b + b^2 c + c^2 a \ge 6.$
2015 AMC 12/AHSME, 10
How many noncongruent integer-sided triangles with positive area and perimeter less than $15$ are neither equilateral, isosceles, nor right triangles?
$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$
2018 IFYM, Sozopol, 8
Prove that for every positive integer $n \geq 2$ the following inequality holds:
$e^{n-1}n!<n^{n+\frac{1}{2}}$
2009 Mathcenter Contest, 4
Let $x,y,z\in \mathbb{R}^+_0$ such that $xy+yz+zx=1$. Prove that $$\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{y+z}}+\frac{1}{\sqrt{z+x}}\ge 2+\frac{1}{\sqrt{2}}.$$
[i](Anonymous314)[/i]
2007 Silk Road, 3
Find the max. value of $ M$,such that for all $ a,b,c>0$:
$ a^{3}+b^{3}+c^{3}-3abc\geq M(|a-b|^{3}+|a-c|^{3}+|c-b|^{3})$
2022 Kyiv City MO Round 1, Problem 1
What's the smallest possible value of $$\frac{(x+y+|x-y|)^2}{xy}$$ over positive real numbers $x, y$?
2004 BAMO, 4
Suppose one is given $n$ real numbers, not all zero, but such that their sum is zero.
Prove that one can label these numbers $a_1, a_2, ..., a_n$ in such a manner that $a_1a_2 + a_2a_3 +...+a_{n-1}a_n + a_na_1 < 0$.
1987 AIME Problems, 8
What is the largest positive integer $n$ for which there is a unique integer $k$ such that $\frac{8}{15} < \frac{n}{n + k} < \frac{7}{13}$?
2023 Taiwan TST Round 2, A
For each positive integer $k$ greater than $1$, find the largest real number $t$ such that the following hold:
Given $n$ distinct points $a^{(1)}=(a^{(1)}_1,\ldots, a^{(1)}_k)$, $\ldots$, $a^{(n)}=(a^{(n)}_1,\ldots, a^{(n)}_k)$ in $\mathbb{R}^k$, we define the score of the tuple $a^{(i)}$ as
\[\prod_{j=1}^{k}\#\{1\leq i'\leq n\textup{ such that }\pi_j(a^{(i')})=\pi_j(a^{(i)})\}\]
where $\#S$ is the number of elements in set $S$, and $\pi_j$ is the projection $\mathbb{R}^k\to \mathbb{R}^{k-1}$ omitting the $j$-th coordinate. Then the $t$-th power mean of the scores of all $a^{(i)}$'s is at most $n$.
Note: The $t$-th power mean of positive real numbers $x_1,\ldots,x_n$ is defined as
\[\left(\frac{x_1^t+\cdots+x_n^t}{n}\right)^{1/t}\]
when $t\neq 0$, and it is $\sqrt[n]{x_1\cdots x_n}$ when $t=0$.
[i]Proposed by Cheng-Ying Chang and usjl[/i]
VI Soros Olympiad 1999 - 2000 (Russia), 9.4
Is there a function $f(x)$, which satisfies both of the following conditions:
a) if $x \ne y$, then $f(x)\ne f(y)$
b) for all real $x$, holds the inequality $f(x^2-1998x)-f^2(2x-1999)\ge \frac14$?
2013 Bosnia And Herzegovina - Regional Olympiad, 1
If $x$ and $y$ are real numbers such that $x^{2013}+y^{2013}>x^{2012}+y^{2012}$, prove that $x^{2014}+y^{2014}>x^{2013}+y^{2013}$
2019 NMTC Junior, 3
Find the number of permutations $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$ of the integers $-3, -2, -1, 0,1,2,3,4$ that satisfy the chain of inequalities $$x_1x_2\le x_2x_3\le x_3x_4\le x_4x_5\le x_5x_6\le x_6x_7\le x_7x_8.$$
2002 AMC 12/AHSME, 22
Triangle $ ABC$ is a right triangle with $ \angle ACB$ as its right angle, $ m\angle ABC \equal{} 60^\circ$, and $ AB \equal{} 10$. Let $ P$ be randomly chosen inside $ \triangle ABC$, and extend $ \overline{BP}$ to meet $ \overline{AC}$ at $ D$. What is the probability that $ BD > 5\sqrt2$?
[asy]import math;
unitsize(4mm);
defaultpen(fontsize(8pt)+linewidth(0.7));
dotfactor=4;
pair A=(10,0);
pair C=(0,0);
pair B=(0,10.0/sqrt(3));
pair P=(2,2);
pair D=extension(A,C,B,P);
draw(A--C--B--cycle);
draw(B--D);
dot(P);
label("A",A,S);
label("D",D,S);
label("C",C,S);
label("P",P,NE);
label("B",B,N);[/asy]
$ \textbf{(A)}\ \frac {2 \minus{} \sqrt2}{2} \qquad \textbf{(B)}\ \frac {1}{3} \qquad \textbf{(C)}\ \frac {3 \minus{} \sqrt3}{3} \qquad \textbf{(D)}\ \frac {1}{2} \qquad \textbf{(E)}\ \frac {5 \minus{} \sqrt5}{5}$
2024 Ukraine National Mathematical Olympiad, Problem 3
$2024$ positive real numbers with sum $1$ are arranged on a circle. It is known that any two adjacent numbers differ at least in $2$ times. For each pair of adjacent numbers, the smaller one was subtracted from the larger one, and then all these differences were added together. What is the smallest possible value of this resulting sum?
[i]Proposed by Oleksiy Masalitin[/i]
1965 IMO Shortlist, 1
Determine all values of $x$ in the interval $0 \leq x \leq 2\pi$ which satisfy the inequality \[ 2 \cos{x} \leq \sqrt{1+\sin{2x}}-\sqrt{1-\sin{2x}} \leq \sqrt{2}. \]
2022 Taiwan TST Round 1, G
Two triangles $ABC$ and $A'B'C'$ are on the plane. It is known that each side length of triangle $ABC$ is not less than $a$, and each side length of triangle $A'B'C'$ is not less than $a'$. Prove that we can always choose two points in the two triangles respectively such that the distance between them is not less than $\sqrt{\dfrac{a^2+a'^2}{3}}$.
2011 India IMO Training Camp, 1
Let $ABC$ be an acute-angled triangle. Let $AD,BE,CF$ be internal bisectors with $D, E, F$ on $BC, CA, AB$ respectively. Prove that
\[\frac{EF}{BC}+\frac{FD}{CA}+\frac{DE}{AB}\geq 1+\frac{r}{R}\]
2005 Harvard-MIT Mathematics Tournament, 4
If $a,b,c>0$, what is the smallest possible value of $ \left\lfloor \dfrac {a+b}{c} \right\rfloor + \left\lfloor \dfrac {b+c}{a} \right\rfloor + \left\lfloor \dfrac {c+a}{b} \right\rfloor $? (Note that $ \lfloor x \rfloor $ denotes the greatest integer less than or equal to $x$.)