This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2020 IMO Shortlist, A4

The real numbers $a, b, c, d$ are such that $a\geq b\geq c\geq d>0$ and $a+b+c+d=1$. Prove that \[(a+2b+3c+4d)a^ab^bc^cd^d<1\] [i]Proposed by Stijn Cambie, Belgium[/i]

2014 Irish Math Olympiad, 5

Tags: inequalities
Suppose $a_1,a_2,\ldots,a_n>0 $, where $n>1$ and $\sum_{i=1}^{n}a_i=1$. For each $i=1,2,\ldots,n $, let $b_i=\frac{a^2_i}{\sum\limits_{j=1}^{n}a^2_j}$. Prove that \[\sum_{i=1}^{n}\frac{a_i}{1-a_i}\le \sum_{i=1}^{n}\frac{b_i}{1-b_i} .\] When does equality occur ?

2002 Iran Team Selection Test, 6

Assume $x_{1},x_{2},\dots,x_{n}\in\mathbb R^{+}$, $\sum_{i=1}^{n}x_{i}^{2}=n$, $\sum_{i=1}^{n}x_{i}\geq s>0$ and $0\leq\lambda\leq1$. Prove that at least $\left\lceil\frac{s^{2}(1-\lambda)^{2}}n\right\rceil$ of these numbers are larger than $\frac{\lambda s}{n}$.

1979 IMO Longlists, 35

Given a sequence $(a_n)$, with $a_1 = 4$ and $a_{n+1} = a_n^2-2 (\forall n \in\mathbb{N})$, prove that there is a triangle with side lengths $a_{n-1}, a_n, a_{n+1},$ and that its area is equal to an integer.

2004 China Team Selection Test, 1

Find the largest value of the real number $ \lambda$, such that as long as point $ P$ lies in the acute triangle $ ABC$ satisfying $ \angle{PAB}\equal{}\angle{PBC}\equal{}\angle{PCA}$, and rays $ AP$, $ BP$, $ CP$ intersect the circumcircle of triangles $ PBC$, $ PCA$, $ PAB$ at points $ A_1$, $ B_1$, $ C_1$ respectively, then $ S_{A_1BC}\plus{} S_{B_1CA}\plus{} S_{C_1AB} \geq \lambda S_{ABC}$.

2019 Junior Balkan Team Selection Tests - Romania, 2

Find the maximum value of: $E(a,b)=\frac{a+b}{(4a^2+3)(4b^2+3)}$ For $a,b$ real numbers.

2012 Dutch IMO TST, 2

Tags: inequalities
Let $a, b, c$ and $d$ be positive real numbers. Prove that $$\frac{a - b}{b + c}+\frac{b - c}{c + d}+\frac{c - d}{d + a} +\frac{d - a}{a + b } \ge 0 $$

2004 China Team Selection Test, 1

Find the largest value of the real number $ \lambda$, such that as long as point $ P$ lies in the acute triangle $ ABC$ satisfying $ \angle{PAB}\equal{}\angle{PBC}\equal{}\angle{PCA}$, and rays $ AP$, $ BP$, $ CP$ intersect the circumcircle of triangles $ PBC$, $ PCA$, $ PAB$ at points $ A_1$, $ B_1$, $ C_1$ respectively, then $ S_{A_1BC}\plus{} S_{B_1CA}\plus{} S_{C_1AB} \geq \lambda S_{ABC}$.

2004 IMC, 4

Suppose $n\geq 4$ and let $S$ be a finite set of points in the space ($\mathbb{R}^3$), no four of which lie in a plane. Assume that the points in $S$ can be colored with red and blue such that any sphere which intersects $S$ in at least 4 points has the property that exactly half of the points in the intersection of $S$ and the sphere are blue. Prove that all the points of $S$ lie on a sphere.

2021 Kyiv Mathematical Festival, 2

Let $a,b,c\ge0$ and $a+b+c=3.$ Prove that $(3a-bc)(3b-ac)(3c-ab)\le8.$ (O. Rudenko)

2006 Romania National Olympiad, 1

Find the maximal value of \[ \left( x^3+1 \right) \left( y^3 + 1\right) , \] where $x,y \in \mathbb R$, $x+y=1$. [i]Dan Schwarz[/i]

1986 AMC 12/AHSME, 30

Tags: inequalities
The number of real solutions $(x,y,z,w)$ of the simultaneous equations \[2y = x + \frac{17}{x},\quad 2z = y + \frac{17}{y},\quad 2w = z + \frac{17}{z},\quad 2x = w + \frac{17}{w}\] is $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 16 $

1999 Czech and Slovak Match, 6

Prove that for any integer $n \ge 3$, the least common multiple of the numbers $1,2, ... ,n$ is greater than $2^{n-1}$.

1985 AMC 12/AHSME, 8

Tags: inequalities
Let $ a$, $ a'$, $ b$, and $ b'$ be real numbers with $ a$ and $ a'$ nonzero. The solution to $ ax \plus{} b \equal{} 0$ is less than the solution to $ a'x \plus{} b' \equal{} 0$ if and only if $ \textbf{(A)}\ a'b < ab' \qquad \textbf{(B)}\ ab' < a'b \qquad \textbf{(C)}\ ab < a'b' \qquad \textbf{(D)}\ \frac {b}{a} < \frac {b'}{a'}$ $ \textbf{(E)}\ \frac {b'}{a'} < \frac {b}{a}$

2015 Romania Team Selection Tests, 5

Given an integer $N \geq 4$, determine the largest value the sum $$\sum_{i=1}^{\left \lfloor{\frac{k}{2}}\right \rfloor+1}\left( \left \lfloor{\frac{n_i}{2}}\right \rfloor+1\right)$$ may achieve, where $k, n_1, \ldots, n_k$ run through the integers subject to $k \geq 3$, $n_1 \geq \ldots\geq n_k\geq 1$ and $n_1 + \ldots + n_k = N$.

2003 Tournament Of Towns, 6

A trapezoid with bases $AD$ and $BC$ is circumscribed about a circle, $E$ is the intersection point of the diagonals. Prove that $\angle AED$ is not acute.

2000 AMC 12/AHSME, 13

Tags: inequalities
One morning each member of Angela’s family drank an $ 8$-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

2006 All-Russian Olympiad Regional Round, 10.5

Prove that for every $x$ such that $\sin x \ne 0$, there is such natural $n$, which $$ | \sin nx| \ge \frac{\sqrt3}{2}.$$

2013 Moldova Team Selection Test, 1

Consider real numbers $x,y,z$ such that $x,y,z>0$. Prove that \[ (xy+yz+xz)\left(\frac{1}{x^2+y^2}+\frac{1}{x^2+z^2}+\frac{1}{y^2+z^2}\right) > \frac{5}{2}. \]

2007 South East Mathematical Olympiad, 4

Tags: inequalities
Let $a$,$b$,$c$ be positive real numbers satisfying $abc=1$. Prove that inequality $\dfrac{a^k}{a+b}+ \dfrac{b^k}{b+c}+\dfrac{c^k}{c+a}\ge \dfrac{3}{2}$ holds for all integer $k$ ($k \ge 2$).

2013 China Team Selection Test, 1

Tags: inequalities
Let $n$ and $k$ be two integers which are greater than $1$. Let $a_1,a_2,\ldots,a_n,c_1,c_2,\ldots,c_m$ be non-negative real numbers such that i) $a_1\ge a_2\ge\ldots\ge a_n$ and $a_1+a_2+\ldots+a_n=1$; ii) For any integer $m\in\{1,2,\ldots,n\}$, we have that $c_1+c_2+\ldots+c_m\le m^k$. Find the maximum of $c_1a_1^k+c_2a_2^k+\ldots+c_na_n^k$.

2012 Kazakhstan National Olympiad, 1

Tags: inequalities
For a positive reals $ x_{1},...,x_{n} $ prove inequlity: $ \frac{1}{x_{1}+1}+...+\frac{1}{x_{n}+1}\le \frac{n}{1+\frac{n}{\frac{1}{x_{1}}+...+\frac{1}{x_{n}}}}$

1996 IMO Shortlist, 4

Let $ a_{1}, a_{2}...a_{n}$ be non-negative reals, not all zero. Show that that (a) The polynomial $ p(x) \equal{} x^{n} \minus{} a_{1}x^{n \minus{} 1} \plus{} ... \minus{} a_{n \minus{} 1}x \minus{} a_{n}$ has preceisely 1 positive real root $ R$. (b) let $ A \equal{} \sum_{i \equal{} 1}^n a_{i}$ and $ B \equal{} \sum_{i \equal{} 1}^n ia_{i}$. Show that $ A^{A} \leq R^{B}$.

2014 Taiwan TST Round 2, 1

Let $a_i > 0$ for $i=1,2,\dots,n$ and suppose $a_1 + a_2 + \dots + a_n = 1$. Prove that for any positive integer $k$, \[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]

2008 Macedonia National Olympiad, 2

Positive numbers $ a$, $ b$, $ c$ are such that $ \left(a \plus{} b\right)\left(b \plus{} c\right)\left(c \plus{} a\right) \equal{} 8$. Prove the inequality \[ \frac {a \plus{} b \plus{} c}{3}\ge\sqrt [27]{\frac {a^3 \plus{} b^3 \plus{} c^3}{3}} \]