This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2022 Israel Olympic Revenge, 3

Determine if there exist positive real numbers $x, \alpha$, so that for any non-empty finite set of positive integers $S$, the inequality \[\left|x-\sum_{s\in S}\frac{1}{s}\right|>\frac{1}{\max(S)^\alpha}\] holds, where $\max(S)$ is defined as the maximum element of the finite set $S$.

2022 Greece Team Selection Test, 3

Find largest possible constant $M$ such that, for any sequence $a_n$, $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$, $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$\frac{a_{n+1}}{a_n} >M$$ for any integer $n\ge 0$.

2004 Romania National Olympiad, 2

Prove that the equation $x^2+y^2+z^2+t^2=2^{2004}$, where $0 \leq x \leq y \leq z \leq t$, has exactly $2$ solutions in $\mathbb Z$. [i]Mihai Baluna[/i]

2007 Baltic Way, 4

Tags: inequalities
Let $a_1,a_2,\ldots ,a_n$ be positive real numbers, and let $S=a_1+a_2 +\ldots +a_n$ . Prove that \[(2S+n)(2S+a_1a_2+a_2a_3+\ldots +a_na_1)\ge 9(\sqrt{a_1a_2}+\sqrt{a_2a_3}+\ldots +\sqrt{a_na_1})^2 \]

2023 China Team Selection Test, P14

Tags: inequalities , set
For any nonempty, finite set $B$ and real $x$, define $$d_B(x) = \min_{b\in B} |x-b|$$ (1) Given positive integer $m$. Find the smallest real number $\lambda$ (possibly depending on $m$) such that for any positive integer $n$ and any reals $x_1,\cdots,x_n \in [0,1]$, there exists an $m$-element set $B$ of real numbers satisfying $$d_B(x_1)+\cdots+d_B(x_n) \le \lambda n$$ (2) Given positive integer $m$ and positive real $\epsilon$. Prove that there exists a positive integer $n$ and nonnegative reals $x_1,\cdots,x_n$, satisfying for any $m$-element set $B$ of real numbers, we have $$d_B(x_1)+\cdots+d_B(x_n) > (1-\epsilon)(x_1+\cdots+x_n)$$

2022 Bulgarian Spring Math Competition, Problem 11.3

In every cell of a table with $n$ rows and $m$ columns is written one of the letters $a$, $b$, $c$. Every two rows of the table have the same letter in at most $k\geq 0$ positions and every two columns coincide at most $k$ positions. Find $m$, $n$, $k$ if \[\frac{2mn+6k}{3(m+n)}\geq k+1\]

2010 IMO Shortlist, 3

Let $x_1, \ldots , x_{100}$ be nonnegative real numbers such that $x_i + x_{i+1} + x_{i+2} \leq 1$ for all $i = 1, \ldots , 100$ (we put $x_{101 } = x_1, x_{102} = x_2).$ Find the maximal possible value of the sum $S = \sum^{100}_{i=1} x_i x_{i+2}.$ [i]Proposed by Sergei Berlov, Ilya Bogdanov, Russia[/i]

2016 Singapore MO Open, 2

Let $a, b, c$ be real numbers such that $0 < a, b, c < 1/2$ and $a + b + c= 1$. Prove that for all real numbers $x,y,z$, $$abc(x + y + z)^2 \ge ayz( 1- 2a) + bxz( 1 - 2b) + cxy( 1 - 2c)$$. When does equality hold?

2010 Lithuania National Olympiad, 1

Tags: inequalities
Let $a,b$ be real numbers. Prove the inequality \[ 2(a^4+a^2b^2+b^4)\ge 3(a^3b+ab^3).\]

2021 Alibaba Global Math Competition, 9

Let $\varepsilon$ be positive constant and $u$ satisfies that \[ \begin{cases} (\partial_t-\varepsilon\partial_x^2-\partial_y^2)u=0, & (t,x,y) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+,\\ \partial_y u\vert_{y=0}=\partial_x h, &\\u\vert_{t=0}=0. & \end{cases}\] Here $h(t,x)$ is a smooth Schwartz function. Define the operator $e^{a\langle D\rangle}$ \[\mathcal{F}_x(e^{a\langle D\rangle} f)(k)=e^{a\langle k\rangle} \mathcal{F}_x(f)(k), \quad \langle k\rangle=1+\vert k\vert,\] where $\mathcal{F}_x$ stands for the Fourier transform in $x$. Show that \[\int_0^T \|e^{(1-s)\langle D\rangle} u\|_{L_{x,y}^2}^2 ds \le C \int_0^T \|e^{(1-s)\langle D\rangle} h\|_{H_x^{\frac{1}{4}}}^2 ds\] with constant $C$ independent of $\varepsilon, T$ and $h$.

1974 IMO Longlists, 14

Tags: inequalities
Let $n$ and $k$ be natural numbers and $a_1,a_2,\ldots ,a_n$ be positive real numbers satisfying $a_1+a_2+\cdots +a_n=1$. Prove that \[\dfrac {1} {a_1^{k}}+\dfrac {1} {a_2^{k}}+\cdots +\dfrac {1} {a_n^{k}} \ge n^{k+1}.\]

2019 Kyiv Mathematical Festival, 3

Tags: inequalities
Let $a,b,c\ge0$ and $a+b+c\ge3.$ Prove that $a^4+b^3+c^2\ge a^3+b^2+c.$

1999 Italy TST, 2

Let $D$ and $E$ be points on sides $AB$ and $AC$ respectively of a triangle $ABC$ such that $DE$ is parallel to $BC$ and tangent to the incircle of $ABC$. Prove that \[DE\le\frac{1}{8}(AB+BC+CA) \]

2017 Iran MO (3rd round), 2

Let $a,b,c$ and $d$ be positive real numbers such that $a^2+b^2+c^2+d^2 \ge 4$. Prove that $$(a+b)^3+(c+d)^3+2(a^2+b^2+c^2+d^2) \ge 4(ab+bc+cd+da+ac+bd)$$

2023 Belarusian National Olympiad, 10.3

Let $a,b,c$ be positive real numbers, that satisfy $abc=1$. Prove the inequality: $$\frac{ab}{1+c}+\frac{bc}{1+a}+\frac{ca}{1+b} \geq \frac{27}{(a+b+c)(3+a+b+c)}$$

2008 Brazil National Olympiad, 3

Let $ x,y,z$ real numbers such that $ x \plus{} y \plus{} z \equal{} xy \plus{} yz \plus{} zx$. Find the minimum value of \[ {x \over x^2 \plus{} 1} \plus{} {y\over y^2 \plus{} 1} \plus{} {z\over z^2 \plus{} 1}\]

2009 Kyiv Mathematical Festival, 2

Let $x,y,z$ be positive numebrs such that $x+y+z\le x^3+y^3+z^3$. Is it true that a) $x^2+y^2+z^2 \le x^3+y^3+z^3$ ? b) $x+y+z\le x^2+y^2+z^2$ ?

PEN O Problems, 36

Let a and b be non-negative integers such that $ab \ge c^{2}$ where $c$ is an integer. Prove that there is a positive integer n and integers $x_{1}$, $x_{2}$, $\cdots$, $x_{n}$, $y_{1}$, $y_{2}$, $\cdots$, $y_{n}$ such that \[{x_{1}}^{2}+\cdots+{x_{n}}^{2}=a,\;{y_{1}}^{2}+\cdots+{y_{n}}^{2}=b,\; x_{1}y_{1}+\cdots+x_{n}y_{n}=c\]

2022 Canadian Mathematical Olympiad Qualification, 3

Consider n real numbers $x_0, x_1, . . . , x_{n-1}$ for an integer $n \ge 2$. Moreover, suppose that for any integer $i$, $x_{i+n} = x_i$ . Prove that $$\sum^{n-1}_{i=0} x_i(3x_i - 4x_{i+1} + x_{i+2}) \ge 0.$$

2009 Dutch IMO TST, 3

Let $a, b$ and $c$ be positive reals such that $a + b + c \ge abc$. Prove that $a^2 + b^2 + c^2 \ge \sqrt3 abc$.

2025 Abelkonkurransen Finale, 4b

Determine the largest real number \(C\) such that $$\frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}\geqslant C$$ for all real numbers \(x,y,z\neq 0\) satisfying the equation $$\frac{x}{yz}+\frac{4y}{xz}+\frac{9z}{xy}=24$$

2019 Miklós Schweitzer, 5

Tags: inequalities
Let $S \subset \mathbb{R}^d$ be a convex compact body with nonempty interior. Show that there is an $\alpha > 0$ such that if $S = \cap_{i \in I} H_i$, where $I$ is an index set and $(H_i)_{i \in I}$ are halfspaces, then for any $P \in \mathbb{R}^d$, there is an $i \in I$ for which $\mathrm{dist}(P, H_i) \ge \alpha \, \mathrm{dist}(P, S)$.

2021 Regional Competition For Advanced Students, 1

Let $a$ and $b$ be positive integers and $c$ be a positive real number satisfying $$\frac{a + 1}{b + c}=\frac{b}{a}.$$ Prove that $c \ge 1$ holds. (Karl Czakler)

2012 ELMO Shortlist, 6

Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$. For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$. [i]Linus Hamilton.[/i]

2020 Jozsef Wildt International Math Competition, W50

Let $f:[0,1]\to\mathbb R$ be a differentiable function, while $f'$ is continuous on $[0,1]$ and $|f'(x)|\le1$, $(\forall)x\in[0,1]$. If $$2\left|\int^1_0f(x)dx\right|\le1$$ Show that: $$(n+2)\left|\int^1_0x^nf(x)dx\right|\le1,~(\forall)x\ge1$$ [i]Proposed by Florin Stănescu and Şerban Cioculescu[/i]