This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2018 Bulgaria JBMO TST, 3

Tags: inequalities
Prove for all positive real numbers $m,n,p,q$ that $$\frac{m}{t+n+p+q} + \frac{n}{t+p+q+m} + \frac{p}{t+q+m+n} + \frac{q}{t+m+n+p} \geq \frac{4}{5},$$ where $t=\frac{m+n+p+q}{2}.$

2013 China Team Selection Test, 2

Tags: inequalities
Let $k\ge 2$ be an integer and let $a_1 ,a_2 ,\cdots ,a_n,b_1 ,b_2 ,\cdots ,b_n$ be non-negative real numbers. Prove that\[\left(\frac{n}{n-1}\right)^{n-1}\left(\frac{1}{n} \sum_{i\equal{}1}^{n} a_i^2\right)+\left(\frac{1}{n} \sum_{i\equal{}1}^{n} b_i\right)^2\ge\prod_{i=1}^{n}(a_i^{2}+b_i^{2})^{\frac{1}{n}}.\]

1986 China Team Selection Test, 2

Given a tetrahedron $ABCD$, $E$, $F$, $G$, are on the respectively on the segments $AB$, $AC$ and $AD$. Prove that: i) area $EFG \leq$ max{area $ABC$,area $ABD$,area $ACD$,area $BCD$}. ii) The same as above replacing "area" for "perimeter".

2021 Tuymaada Olympiad, 3

Positive real numbers $a_1, \dots, a_k, b_1, \dots, b_k$ are given. Let $A = \sum_{i = 1}^k a_i, B = \sum_{i = 1}^k b_i$. Prove the inequality \[ \left( \sum_{i = 1}^k \frac{a_i b_i}{a_i B + b_i A} - 1 \right)^2 \ge \sum_{i = 1}^k \frac{a_i^2}{a_i B + b_i A} \cdot \sum_{i = 1}^k \frac{b_i^2}{a_i B + b_i A}. \]

2018 JBMO Shortlist, A5

Let a$,b,c,d$ and $x,y,z,t$ be real numbers such that $0\le a,b,c,d \le 1$ , $x,y,z,t \ge 1$ and $a+b+c+d +x+y+z+t=8$. Prove that $a^2+b^2+c^2+d^2+x^2+y^2+z^2+t^2\le 28$

Russian TST 2016, P2

Prove that \[1+\frac{2^1}{1-2^1}+\frac{2^2}{(1-2^1)(1-2^2)}+\cdots+\frac{2^{2016}}{(1-2^1)\cdots(1-2^{2016})}>0.\]

1977 IMO Longlists, 58

Prove that for every triangle the following inequality holds: \[\frac{ab+bc+ca}{4S} \geq \cot \frac{\pi}{6}.\] where $a, b, c$ are lengths of the sides and $S$ is the area of the triangle.

2007 Bulgaria Team Selection Test, 2

Find all $a\in\mathbb{R}$ for which there exists a non-constant function $f: (0,1]\rightarrow\mathbb{R}$ such that \[a+f(x+y-xy)+f(x)f(y)\leq f(x)+f(y)\] for all $x,y\in(0,1].$

2007 Switzerland - Final Round, 7

Let $a, b, c$ be nonnegative real numbers with arithmetic mean $m =\frac{a+b+c}{3}$ . Provethat $$\sqrt{a+\sqrt{b + \sqrt{c}}} +\sqrt{b+\sqrt{c + \sqrt{a}}} +\sqrt{c +\sqrt{a + \sqrt{b}}}\le 3\sqrt{m+\sqrt{m + \sqrt{m}}}.$$

2007 Indonesia TST, 3

For each real number $ x$< let $ \lfloor x \rfloor$ be the integer satisfying $ \lfloor x \rfloor \le x < \lfloor x \rfloor \plus{}1$ and let $ \{x\}\equal{}x\minus{}\lfloor x \rfloor$. Let $ c$ be a real number such that \[ \{n\sqrt{3}\}>\dfrac{c}{n\sqrt{3}}\] for all positive integers $ n$. Prove that $ c \le 1$.

1969 Miklós Schweitzer, 4

Show that the following inequality hold for all $ k \geq 1$, real numbers $ a_1,a_2,...,a_k$, and positive numbers $ x_1,x_2,...,x_k.$ \[ \ln \frac {\sum\limits_{i \equal{} 1}^kx_i}{\sum\limits_{i \equal{} 1}^kx_i^{1 \minus{} a_i}} \leq \frac {\sum\limits_{i \equal{} 1}^ka_ix_i \ln x_i}{\sum\limits_{i \equal{} 1}^kx_i} . \] [i]L. Losonczi[/i]

2014 Contests, 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2007 BAMO, 5

Two sequences of positive integers, $x_1,x_2,x_3, ...$ and $y_1,y_2,y_3,..$ are given, such that $\frac{y_{n+1}}{x_{n+1}} > \frac{y_n}{x_n}$ for each $n \ge 1$. Prove that there are infinitely many values of $n$ such that $y_n > \sqrt{n}$.

2009 Iran Team Selection Test, 7

Suppose three direction on the plane . We draw $ 11$ lines in each direction . Find maximum number of the points on the plane which are on three lines .

2014 Miklós Schweitzer, 2

Let $ k\geq 1 $ and let $ I_{1},\dots, I_{k} $ be non-degenerate subintervals of the interval $ [0, 1] $. Prove that \[ \sum \frac{1}{\left | I_{i}\cup I_{j} \right |} \geq k^{2} \] where the summation is over all pairs $ (i, j) $ of indices such that $I_i\cap I_j\neq \emptyset$.

1979 All Soviet Union Mathematical Olympiad, 273

For every $n$, the decreasing sequence $\{x_k\}$ satisfies a condition $$x_1+x_4/2+x_9/3+...+x_n^2/n \le 1$$ Prove that for every $n$, it also satisfies $$x_1+x_2/2+x_3/3+...+x_n/n\le 3$$

2009 China Team Selection Test, 3

Tags: inequalities
Let nonnegative real numbers $ a_{1},a_{2},a_{3},a_{4}$ satisfy $ a_{1} \plus{} a_{2} \plus{} a_{3} \plus{} a_{4} \equal{} 1.$ Prove that $ max\{\sum_{1}^4{\sqrt {a_{i}^2 \plus{} a_{i}a_{i \minus{} 1} \plus{} a_{i \minus{} 1}^2 \plus{} a_{i \minus{} 1}a_{i \minus{} 2}}},\sum_{1}^4{\sqrt {a_{i}^2 \plus{} a_{i}a_{i \plus{} 1} \plus{} a_{i \plus{} 1}^2 \plus{} a_{i \plus{} 1}a_{i \plus{} 2}}}\}\ge 2.$ Where for all integers $ i, a_{i \plus{} 4} \equal{} a_{i}$ holds.

2024 Ukraine National Mathematical Olympiad, Problem 5

For real numbers $a, b, c, d \in [0, 1]$, find the largest possible value of the following expression: $$a^2+b^2+c^2+d^2-ab-bc-cd-da$$ [i]Proposed by Mykhailo Shtandenko[/i]

2004 India IMO Training Camp, 3

Tags: inequalities
For $a,b,c$ positive reals find the minimum value of \[ \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}. \]

2013 Canadian Mathematical Olympiad Qualification Repechage, 6

Tags: inequalities
Let $x, y, z$ be real numbers that are greater than or equal to $0$ and less than or equal to $\frac{1}{2}$ [list] [*] (a) Determine the minimum possible value of \[x+y+z-xy-yz-zx\] and determine all triples $(x,y,z)$ for which this minimum is obtained. [*] (b) Determine the maximum possible value of \[x+y+z-xy-yz-zx\] and determine all triples $(x,y,z)$ for which this maximum is obtained.[/list]

2006 Federal Math Competition of S&M, Problem 3

Show that for an arbitrary tetrahedron there are two planes such that the ratio of the areas of the projections of the tetrahedron onto the two planes is not less than $\sqrt2$.

2018 Kazakhstan National Olympiad, 6

Inside of convex quadrilateral $ABCD$ found a point $M$ such that $\angle AMB=\angle ADM+\angle BCM$ and $\angle AMD=\angle ABM+\angle DCM$.Prove that $$AM\cdot CM+BM\cdot DM\ge \sqrt{AB\cdot BC\cdot CD\cdot DA}.$$

2024 239 Open Mathematical Olympiad, 5

Let $a, b, c$ be reals such that $$a^2(c^2-2b-1)+b^2(a^2-2c-1)+c^2(b^2-2a-1)=0.$$ Show that $$3(a^2+b^2+c^2)+4(a+b+c)+3 \geq 6abc.$$

2013 USAMO, 3

Let $n$ be a positive integer. There are $\tfrac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing $n$ marks. Initially, each mark has the black side up. An [i]operation[/i] is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called [i]admissible [/i] if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration $C$, let $f(C)$ denote the smallest number of operations required to obtain $C$ from the initial configuration. Find the maximum value of $f(C)$, where $C$ varies over all admissible configurations.

1999 Brazil Team Selection Test, Problem 4

Let Q+ and Z denote the set of positive rationals and the set of inte- gers, respectively. Find all functions f : Q+ → Z satisfying the following conditions: (i) f(1999) = 1; (ii) f(ab) = f(a) + f(b) for all a, b ∈ Q+; (iii) f(a + b) ≥ min{f(a), f(b)} for all a, b ∈ Q+.