Found problems: 6530
2011 China National Olympiad, 3
Let $A$ be a set consist of finite real numbers,$A_1,A_2,\cdots,A_n$ be nonempty sets of $A$, such that
[b](a)[/b] The sum of the elements of $A$ is $0,$
[b](b)[/b] For all $x_i \in A_i(i=1,2,\cdots,n)$,we have $x_1+x_2+\cdots+x_n>0$.
Prove that there exist $1\le k\le n,$ and $1\le i_1<i_2<\cdots<i_k\le n$, such that
\[|A_{i_1}\bigcup A_{i_2} \bigcup \cdots \bigcup A_{i_k}|<\frac{k}{n}|A|.\]
Where $|X|$ denote the numbers of the elements in set $X$.
1975 Putnam, B6
Let $H_n=\sum_{r=1}^{n} \frac{1}{r}$. Show that
$$n-(n-1)n^{-1\slash (n-1)}>H_n>n(n+1)^{1\slash n}-n$$
for $n>2$.
2007 Bulgaria Team Selection Test, 1
Let $ABC$ is a triangle with $\angle BAC=\frac{\pi}{6}$ and the circumradius equal to 1. If $X$ is a point inside or in its boundary let $m(X)=\min(AX,BX,CX).$ Find all the angles of this triangle if $\max(m(X))=\frac{\sqrt{3}}{3}.$
2023 Brazil Undergrad MO, 1
Let $p$ be the [i]potentioral[/i] function, from positive integers to positive integers, defined by $p(1) = 1$ and $p(n + 1) = p(n)$, if $n + 1$ is not a perfect power and $p(n + 1) = (n + 1) \cdot p(n)$, otherwise. Is there a positive integer $N$ such that, for all $n > N,$ $p(n) > 2^n$?
2004 Federal Math Competition of S&M, 3
Let $M, N, P$ be arbitrary points on the sides $BC, CA, AB$ respectively of an acute-angled triangle $ABC$. Prove that at least one of the following inequalities is satisfied:
$NP \geq \frac{1}{2}BC; PM \geq \frac{1}{2}CA; MN \geq \frac{1}{2}AB$
2005 MOP Homework, 7
Let $ABC$ be a triangle. Prove that \[\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab} \ge 4\left(\sin^2\frac{A}{2}+\sin^2\frac{B}{2}+\sin^2\frac{C}{2}\right).\]
2018 Thailand TST, 1
Let $x, y, z$ be positive reals such that $xyz = 1$. Prove that $$\sum_{cyc} \frac{1}{\sqrt{x+2y+6}}\leq\sum_{cyc} \frac{x}{\sqrt{x^2+4\sqrt{y}+4\sqrt{z}}}.$$
2004 Putnam, A1
Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N),$ of successful free throws she has made in her first $N$ attempts of the season. Early in the season, $S(N)$ was less than 80% of $N,$ but by the end of the season, $S(N)$ was more than 80% of $N.$ Was there necessarily a moment in between when $S(N)$ was exactly 80% of $N$?
2023 ISI Entrance UGB, 3
In $\triangle ABC$, consider points $D$ and $E$ on $AC$ and $AB$, respectively, and assume that they do not coincide with any of the vertices $A$, $B$, $C$. If the segments $BD$ and $CE$ intersect at $F$, consider areas $w$, $x$, $y$, $z$ of the quadrilateral $AEFD$ and the triangles $BEF$, $BFC$, $CDF$, respectively.
[list=a]
[*] Prove that $y^2 > xz$.
[*] Determine $w$ in terms of $x$, $y$, $z$.
[/list]
[asy]
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(12); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -2.8465032978885407, xmax = 9.445649196374966, ymin = -1.7618066305534972, ymax = 4.389732795464592; /* image dimensions */
draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282)--cycle, linewidth(0.5));
/* draw figures */
draw((3.8295013012181283,2.816337276198864)--(-0.7368327629589799,-0.5920813291311117), linewidth(0.5));
draw((-0.7368327629589799,-0.5920813291311117)--(5.672613975760373,-0.636902634996282), linewidth(0.5));
draw((5.672613975760373,-0.636902634996282)--(3.8295013012181283,2.816337276198864), linewidth(0.5));
draw((-0.7368327629589799,-0.5920813291311117)--(4.569287648059735,1.430279997142299), linewidth(0.5));
draw((5.672613975760373,-0.636902634996282)--(1.8844000180622977,1.3644681598392678), linewidth(0.5));
label("$y$",(2.74779188172294,0.23771684184669772),SE*labelscalefactor);
label("$w$",(3.2941097703568736,1.8657441499758196),SE*labelscalefactor);
label("$x$",(1.6660824622277512,1.0025618859342047),SE*labelscalefactor);
label("$z$",(4.288408327670633,0.8168138037986672),SE*labelscalefactor);
/* dots and labels */
dot((3.8295013012181283,2.816337276198864),dotstyle);
label("$A$", (3.8732067323088435,2.925600853925651), NE * labelscalefactor);
dot((-0.7368327629589799,-0.5920813291311117),dotstyle);
label("$B$", (-1.1,-0.7565817154670613), NE * labelscalefactor);
dot((5.672613975760373,-0.636902634996282),dotstyle);
label("$C$", (5.763466626982254,-0.7784344310124186), NE * labelscalefactor);
dot((4.569287648059735,1.430279997142299),dotstyle);
label("$D$", (4.692683565259744,1.5051743434774234), NE * labelscalefactor);
dot((1.8844000180622977,1.3644681598392678),dotstyle);
label("$E$", (1.775346039954538,1.4942479857047448), NE * labelscalefactor);
dot((2.937230516274804,0.8082418657164665),linewidth(4.pt) + dotstyle);
label("$F$", (2.889834532767763,0.954), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
PEN A Problems, 86
Find all positive integers $(x, n)$ such that $x^{n}+2^{n}+1$ divides $x^{n+1}+2^{n+1}+1$.
2013 SEEMOUS, Problem 3
Find the maximum value of
$$\int^1_0|f'(x)|^2|f(x)|\frac1{\sqrt x}dx$$over all continuously differentiable functions $f:[0,1]\to\mathbb R$ with $f(0)=0$ and
$$\int^1_0|f'(x)|^2dx\le1.$$
2005 Moldova National Olympiad, 10.4
Real numbers $ x_{1},x_{2},..,x_{n}$ are positive. Prove the inequality:
$ \frac{x_{1}}{x_{2}\plus{}x_{3}}\plus{}\frac{x_{2}}{x_{3}\plus{}x_{4}}\plus{}...\plus{} \frac{x_{n\minus{}1}}{x_{n}\plus{}x_{1}}\plus{}\frac{x_{n}}{x_{1}\plus{}x_{2}}>(\sqrt{2}\minus{}1)n$
2013 Putnam, 4
For any continuous real-valued function $f$ defined on the interval $[0,1],$ let \[\mu(f)=\int_0^1f(x)\,dx,\text{Var}(f)=\int_0^1(f(x)-\mu(f))^2\,dx, M(f)=\max_{0\le x\le 1}|f(x)|.\] Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1],$ then \[\text{Var}(fg)\le 2\text{Var}(f)M(g)^2+2\text{Var}(g)M(f)^2.\]
2002 JBMO ShortLists, 6
Let $ a_1,a_2,...,a_6$ be real numbers such that:
$ a_1 \not \equal{} 0, a_1a_6 \plus{} a_3 \plus{} a_4 \equal{} 2a_2a_5 \ \mathrm{and}\ a_1a_3 \ge a_2^2$
Prove that $ a_4a_6\le a_5^2$. When does equality holds?
2008 Baltic Way, 17
Assume that $ a$, $ b$, $ c$ and $ d$ are the sides of a quadrilateral inscribed in a given circle. Prove that the product $ (ab \plus{} cd)(ac \plus{} bd)(ad \plus{} bc)$ acquires its maximum when the quadrilateral is a square.
2021 ISI Entrance Examination, 7
Let $a, b, c$ be three real numbers which are roots of a cubic polynomial, and satisfy $a+b+c=6$ and $ab+bc+ca=9$. Suppose $a<b<c$. Show that $$0<a<1<b<3<c<4.$$
2015 Romania National Olympiad, 2
Let $a, b, c $ be distinct positive integers.
a) Prove that $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$.
b) if, moreover, $ab + ac + bc +3 = abc > 0,$ show that
$$(a -1)(b -1)+(a -1)(c -1)+(b -1)(c -1) \ge 6.$$
2003 China Team Selection Test, 2
In triangle $ABC$, the medians and bisectors corresponding to sides $BC$, $CA$, $AB$ are $m_a$, $m_b$, $m_c$ and $w_a$, $w_b$, $w_c$ respectively. $P=w_a \cap m_b$, $Q=w_b \cap m_c$, $R=w_c \cap m_a$. Denote the areas of triangle $ABC$ and $PQR$ by $F_1$ and $F_2$ respectively. Find the least positive constant $m$ such that $\frac{F_1}{F_2}<m$ holds for any $\triangle{ABC}$.
2014 Iran MO (3rd Round), 4
For any $a,b,c>0$ satisfying $a+b+c+ab+ac+bc= 3$, prove that
\[2\leq a+b+c+abc\leq 3\]
[i]Proposed by Mohammad Ahmadi[/i]
2018 Kyiv Mathematical Festival, 3
For every $x,y\ge0$ prove that $(x+1)^2+(y-1)^2\ge2\sqrt{2xy}.$
2015 China Team Selection Test, 1
Let $x_1,x_2,\cdots,x_n$ $(n\geq2)$ be a non-decreasing monotonous sequence of positive numbers such that $x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n}$ is a non-increasing monotonous sequence .Prove that
\[ \frac{\sum_{i=1}^{n} x_i }{n\left (\prod_{i=1}^{n}x_i \right )^{\frac{1}{n}}}\le \frac{n+1}{2\sqrt[n]{n!}}\]
2021 Final Mathematical Cup, 3
For every positive integer $n$, $s(n)$ denotes the sum of the digits in the decimal representation of $n$. Prove that for every integer $n \ge 5$, we have $$S(1)S(3)...S(2n-1) \ge S(2)S(4)...S(2n)$$
2000 VJIMC, Problem 3
Prove that if m,n are nonnegative integers and 0<=x<=1 then
$(1-x^n)^m + (1-(1-x)^m)^n \ge 1$
2010 Junior Balkan Team Selection Tests - Romania, 3
We consider the real numbers $a _ 1, a _ 2, a _ 3, a _ 4, a _ 5$ with the zero sum and the property that $| a _ i - a _ j | \le 1$ , whatever it may be $i,j \in \{1, 2, 3, 4, 5 \} $. Show that $a _ 1 ^ 2 + a _ 2 ^ 2 + a _ 3 ^ 2 + a _ 4 ^ 2 + a _ 5 ^ 2 \le \frac {6} {5}$ .
2013 Bosnia And Herzegovina - Regional Olympiad, 1
If $x$ and $y$ are nonnegative real numbers such that $x+y=1$, determine minimal and maximal value of $$A=x\sqrt{1+y}+y\sqrt{1+x}$$