This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 Romania Team Selection Test, 3

Show that each convex pentagon has a vertex from which the distance to the opposite side of the pentagon is strictly less than the sum of the distances from the two adjacent vertices to the same side. [i]Note[/i]. If the pentagon is labeled $ ABCDE$, the adjacent vertices of $ A$ are $ B$ and $ E$, the ones of $ B$ are $ A$ and $ C$ etc.

2021 China Second Round A2, 3

Tags: inequalities
Given $n\geq 2$, $a_1$, $a_2$, $\cdots$, $a_n\in\mathbb {R}$ satisfy $$a_1\geqslant a_2\geqslant \cdots \geqslant a_n\geqslant 0,a_1+a_2+\cdots +a_n=n.$$ Find the minimum value of $a_1+a_1a_2+\cdots +a_1a_2\cdots a_n$.

2006 District Olympiad, 4

Let $\mathcal F = \{ f: [0,1] \to [0,\infty) \mid f$ continuous $\}$ and $n$ an integer, $n\geq 2$. Find the smallest real constant $c$ such that for any $f\in \mathcal F$ the following inequality takes place \[ \int^1_0 f \left( \sqrt [n] x \right) dx \leq c \int^1_0 f(x) dx. \]

1979 Czech And Slovak Olympiad IIIA, 4

Let $n$ be any natural number. Find all $n$-tuples of real numbers $x_1\le x_2\le ... \le x_n$, for which holds $$\left(\sum_{i=1}^n x_i\right)^2 \le n \sum_{i=1}^n x_i x_{n-i+1}.$$

2011 Cuba MO, 4

Let $x_1, x_2, ..., x_{24}$ be real numbers. prove that $$x_1 + 2x_2 + 3x_3 +...+ 24x_{24} - 439 \le \frac{x^2_1+x^2_2+... + x^2_{24}}{2}+ 2011.$$

2005 Taiwan TST Round 3, 1

Let $P$ be a point in the interior of $\triangle ABC$. The lengths of the sides of $\triangle ABC$ is $a,b,c$, and the distance from $P$ to the sides of $\triangle ABC$ is $p,q,r$. Show that the circumradius $R$ of $\triangle ABC$ satisfies \[\displaystyle R\le \frac{a^2+b^2+c^2}{18\sqrt[3]{pqr}}.\] When does equality hold?

2015 India Regional MathematicaI Olympiad, 7

Let $x,y,z$ be real numbers such that $x^2+y^2+z^2-2xyz=1$. Prove that \[ (1+x)(1+y)(1+z)\le 4+4xyz. \]

2000 Irish Math Olympiad, 1

Prove that if $ x,y$ are nonnegative real numbers with $ x\plus{}y\equal{}2$, then: $ x^2 y^2 (x^2\plus{}y^2) \le 2$.

2005 Today's Calculation Of Integral, 82

Let $0<a<b$.Prove the following inequaliy. \[\frac{1}{b-a}\int_a^b \left(\ln \frac{b}{x}\right)^2 dx<2\]

2004 Brazil Team Selection Test, Problem 1

Let $x,y,z$ be positive numbers such that $x^2+y^2+z^2=1$. Prove that $$\frac x{1-x^2}+\frac y{1-y^2}+\frac z{1-z^2}\ge\frac{3\sqrt3}2$$

2025 6th Memorial "Aleksandar Blazhevski-Cane", P4

Prove that for all real numbers $a, b, c > 1$ the inequality \[a(b^2 + c) + b(c^2 + a) + c(a^2 + b) \ge a^2 + b^2 + c^2 + 3abc\] holds. When does equality hold? Proposed by [i]Ilija Jovcevski[/i]

2022 China Team Selection Test, 4

Given a positive integer $n$, find all $n$-tuples of real number $(x_1,x_2,\ldots,x_n)$ such that \[ f(x_1,x_2,\cdots,x_n)=\sum_{k_1=0}^{2} \sum_{k_2=0}^{2} \cdots \sum_{k_n=0}^{2} \big| k_1x_1+k_2x_2+\cdots+k_nx_n-1 \big| \] attains its minimum.

2004 Germany Team Selection Test, 1

Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$. (1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded? (2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$? Justify your answer.

1987 Romania Team Selection Test, 9

Prove that for all real numbers $\alpha_1,\alpha_2,\ldots,\alpha_n$ we have \[ \sum_{i=1}^n \sum_{j=1}^n ij \cos {(\alpha_i - \alpha_j )} \geq 0. \] [i]Octavian Stanasila[/i]

2014 India Regional Mathematical Olympiad, 2

Tags: inequalities
let $x,y$ be positive real numbers. prove that $ 4x^4+4y^3+5x^2+y+1\geq 12xy $

2002 Flanders Junior Olympiad, 1

Prove that for all $a,b,c \in \mathbb{R}^+_0$ we have \[\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \ge \frac2a+\frac2b-\frac2c\] and determine when equality occurs.

2016 Iran Team Selection Test, 4

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \] where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

2008 Singapore Senior Math Olympiad, 5

Let $a,b,c \ge 0$. Prove that $$\frac{(1+a^2)(1+b^2)(1+c^2)}{(1+a)(1+b)(1+c)}\ge \frac12 (1+abc)$$

2010 ELMO Shortlist, 6

Tags: inequalities
For all positive real numbers $a,b,c$, prove that \[\sqrt{\frac{a^4 + 2b^2c^2}{a^2+2bc}} + \sqrt{\frac{b^4+2c^2a^2}{b^2+2ca}} + \sqrt{\frac{c^4 + 2a^2b^2}{c^2 + 2ab}} \geq a + b + c.\] [i]In-Sung Na.[/i]

2002 India IMO Training Camp, 5

Tags: inequalities
Let $a,b,c$ be positive reals such that $a^2+b^2+c^2=3abc$. Prove that \[\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2} \geq \frac{9}{a+b+c}\]

1975 Dutch Mathematical Olympiad, 3

Given are the real numbers $x_1,x_2,...,x_n$ and $t_1,t_2,...,t_n$ for which holds: $\sum_{i=1}^n x_i = 0$. Prove that $$\sum_{i=1}^n \left( \sum_{j=1}^n (t_i-t_j)^2x_ix_j \right)\le 0.$$

2020 Jozsef Wildt International Math Competition, W30

Let $p>1,\frac1p+\frac1q=1$ and $r>1$. If $u(x,y),v(x,y)>0$, and $f(x,y),g(x,y)$ are continuous functions on $[a,b]\times[c,d]$, then prove $$\left(\frac{\left(\int^b_a\int^d_c(f(x,y)+g(x,y))^rdxdy\right)^{1/r}}{(u(x,y)+v(x,y))^{1/q}}\right)^p\le\left(\frac{\left(\int^b_a\int^d_cf(x,y)^rdxdy\right)^{1/r}}{u(x,y)^{1/q}}\right)^p+\left(\frac{\left(\int^b_a\int^d_cg(x,y)^rdxdy\right)^{1/r}}{v(x,y)^{1/q}}\right)^p,$$ with equality if and only if either $$\left(\lVert f(x,y)\rVert^r_r,\lVert g(x,y)\rVert^r_r\right)=\alpha\left(\lVert u(x,y)\rVert^r_r,\lVert v(x,y)\rVert^r_r\right)$$ for some $\alpha>0$ or $\lVert f(x,y)\rVert^r_r=\lVert g(x,y)\rVert^r_r=0$. [i]Proposed by Chang-Jian Zhao[/i]

2016 Balkan MO Shortlist, A4

The positive real numbers $a, b, c$ satisfy the equality $a + b + c = 1$. For every natural number $n$ find the minimal possible value of the expression $$E=\frac{a^{-n}+b}{1-a}+\frac{b^{-n}+c}{1-b}+\frac{c^{-n}+a}{1-c}$$

2016 Thailand TSTST, 1

Let $a_1, a_2, a_3, \dots$ be a sequence of integers such that $\text{(i)}$ $a_1=0$ $\text{(ii)}$ for all $i\geq 1$, $a_{i+1}=a_i+1$ or $-a_i-1$. Prove that $\frac{a_1+a_2+\cdots+a_n}{n}\geq-\frac{1}{2}$ for all $n\geq 1$.

2016 Romania National Olympiad, 2

Let be a natural number $ n\ge 2 $ and $ n $ positive real numbers $ a_1,a_n,\ldots ,a_n $ that satisfy the inequalities $$ \sum_{j=1}^i a_j\le a_{i+1} ,\quad \forall i\in\{ 1,2,\ldots ,n-1 \} . $$ Prove that $$ \sum_{k=1}^{n-1} \frac{a_k}{a_{k+1}}\le n/2 . $$