Found problems: 6530
2012 USAMO, 6
For integer $n\geq2$, let $x_1, x_2, \ldots, x_n$ be real numbers satisfying \[x_1+x_2+\ldots+x_n=0, \qquad \text{and}\qquad x_1^2+x_2^2+\ldots+x_n^2=1.\]For each subset $A\subseteq\{1, 2, \ldots, n\}$, define\[S_A=\sum_{i\in A}x_i.\](If $A$ is the empty set, then $S_A=0$.)
Prove that for any positive number $\lambda$, the number of sets $A$ satisfying $S_A\geq\lambda$ is at most $2^{n-3}/\lambda^2$. For which choices of $x_1, x_2, \ldots, x_n, \lambda$ does equality hold?
2008 ITest, 7
Find the number of integers $n$ for which $n^2+10n<2008$.
1995 North Macedonia National Olympiad, 2
Let $ a, $ $ b $, and $ c $ be sides in a triangle, a $ h_a, $ $ h_b $, and $ h_c $ are the corresponding altitudes.
Prove that $h ^ 2_a + h ^ 2_b + h ^ 2_c \leq \frac{3}{4} (a ^ 2 + b ^ 2 + c ^ 2). $ When is the equation valid?
1986 IMO Longlists, 35
Establish the maximum and minimum values that the sum $|a| + |b| + |c|$ can have if $a, b, c$ are real numbers such that the maximum value of $|ax^2 + bx + c|$ is $1$ for $-1 \leq x \leq 1.$
1971 IMO Longlists, 38
Let $A,B,C$ be three points with integer coordinates in the plane and $K$ a circle with radius $R$ passing through $A,B,C$. Show that $AB\cdot BC\cdot CA\ge 2R$, and if the centre of $K$ is in the origin of the coordinates, show that $AB\cdot BC\cdot CA\ge 4R$.
1991 Federal Competition For Advanced Students, P2, 5
For all positive integers $ n$ prove the inequality:
$ \left( \frac{1\plus{}(n\plus{}1)^{n\plus{}1}}{n\plus{}2} \right)^{n\minus{}1}>\left( \frac{1\plus{}n^n}{n\plus{}1} \right)^n.$
2014 Online Math Open Problems, 7
How many integers $n$ with $10 \le n \le 500$ have the property that the hundreds digit of $17n$ and $17n+17$ are different?
[i]Proposed by Evan Chen[/i]
2012 Iran MO (2nd Round), 1
[b]a)[/b] Do there exist $2$-element subsets $A_1,A_2,A_3,...$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number $n$, sum of the elements of $A_n$ equals $1391+n$?
[b]b)[/b] Do there exist $2$-element subsets $A_1,A_2,A_3,...$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number $n$, sum of the elements of $A_n$ equals $1391+n^2$?
[i]Proposed by Morteza Saghafian[/i]
2009 Baltic Way, 9
Determine all positive integers $n$ for which $2^{n+1}-n^2$ is a prime number.
1982 Kurschak Competition, 2
Prove that for any integer $k > 2$, there exist infinitely many positive integers $n$ such that the least common multiple of $n$, $n + 1$,$...$, $n + k - 1$ is greater than the least common multiple of $n + 1$,$n + 2$,$...$, $n + k$.
2011 India Regional Mathematical Olympiad, 6
Find all pairs $(x,y)$ of real numbers such that
\[16^{x^{2}+y} + 16^{x+y^{2}} = 1\]
2018 Thailand Mathematical Olympiad, 4
Let $a, b, c$ be nonzero real numbers such that $a + b + c = 0$. Determine the maximum possible value of
$\frac{a^2b^2c^2}{ (a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2)}$
.
2012 India Regional Mathematical Olympiad, 2
Let $P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ be a polynomial of degree $n\geq 3.$ Knowing that $a_{n-1}=-\binom{n}{1}$ and $a_{n-2}=\binom{n}{2},$ and that all the roots of $P$ are real, find the remaining coefficients. Note that $\binom{n}{r}=\frac{n!}{(n-r)!r!}.$
1997 Baltic Way, 4
Prove that the arithmetic mean $a$ of $x_1,\ldots ,x_n$ satisfies
\[ (x_1-a)^2+\ldots +(x_n-a)^2\le \frac{1}{2}(|x_1-a|+\ldots +|x_n-a|)^2\]
1966 IMO Longlists, 63
Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$.
[i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that
$ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$,
where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.
2014 Czech-Polish-Slovak Junior Match, 6
Determine the largest and smallest fractions $F = \frac{y-x}{x+4y}$
if the real numbers $x$ and $y$ satisfy the equation $x^2y^2 + xy + 1 = 3y^2$.
2019 Moldova Team Selection Test, 6
Let $a,b,c \ge 0$ such that $a+b+c=1$ and $s \ge 5$.
Prove that $s(a^2+b^2+c^2) \le 3(s-3)(a^3+b^3+c^3)+1$
2018 Serbia Team Selection Test, 2
Let $n$ be a fixed positive integer and let $x_1,\ldots,x_n$ be positive real numbers. Prove that
$$x_1\left(1-x_1^2\right)+x_2\left(1-(x_1+x_2)^2\right)+\cdots+x_n\left(1-(x_1+...+x_n)^2\right)<\frac{2}{3}.$$
2021 South East Mathematical Olympiad, 3
Let $a,b,c\geq 0$ and $a^2+b^2+c^2\leq 1.$ Prove that$$\frac{a}{a^2+bc+1}+\frac{b}{b^2+ca+1}+\frac{c}{c^2+ab+1}+3abc<\sqrt 3$$
2001 239 Open Mathematical Olympiad, 2
For any positive numbers $ a_1 , a_2 , \dots, a_n $ prove the inequality $$\!
\left(\!1\!+\!\frac{1}{a_1(1+a_1)} \!\right)\!
\left(\!1\!+\!\frac{1}{a_2(1+a_2)} \! \right) \! \dots \!
\left(\!1\!+\!\frac{1}{a_n(1+a_n)} \! \right) \geq
\left(\!1\!+\!\frac{1}{p(1+p)} \! \right)^{\! n} \! ,$$
where $p=\sqrt[n]{a_1 a_2 \dots a_n}$.
2008 ITest, 70
After swimming around the ocean with some snorkling gear, Joshua walks back to the beach where Alexis works on a mural in the sand beside where they drew out symbol lists. Joshua walks directly over the mural without paying any attention.
"You're a square, Josh."
"No, $\textit{you're}$ a square," retorts Joshua. "In fact, you're a $\textit{cube}$, which is $50\%$ freakier than a square by dimension. And before you tell me I'm a hypercube, I'll remind you that mom and dad confirmed that they could not have given birth to a four dimension being."
"Okay, you're a cubist caricature of male immaturity," asserts Alexis.
Knowing nothing about cubism, Joshua decides to ignore Alexis and walk to where he stashed his belongings by a beach umbrella. He starts thinking about cubes and computes some sums of cubes, and some cubes of sums: \begin{align*}1^3+1^3+1^3&=3,\\1^3+1^3+2^3&=10,\\1^3+2^3+2^3&=17,\\2^3+2^3+2^3&=24,\\1^3+1^3+3^3&=29,\\1^3+2^3+3^3&=36,\\(1+1+1)^3&=27,\\(1+1+2)^3&=64,\\(1+2+2)^3&=125,\\(2+2+2)^3&=216,\\(1+1+3)^3&=125,\\(1+2+3)^3&=216.\end{align*} Josh recognizes that the cubes of the sums are always larger than the sum of cubes of positive integers. For instance,
\begin{align*}(1+2+4)^3&=1^3+2^3+4^3+3(1^2\cdot 2+1^2\cdot 4+2^2\cdot 1+2^2\cdot 4+4^2\cdot 1+4^2\cdot 2)+6(1\cdot 2\cdot 4)\\&>1^3+2^3+4^3.\end{align*}
Josh begins to wonder if there is a smallest value of $n$ such that \[(a+b+c)^3\leq n(a^3+b^3+c^3)\] for all natural numbers $a$, $b$, and $c$. Joshua thinks he has an answer, but doesn't know how to prove it, so he takes it to Michael who confirms Joshua's answer with a proof. What is the correct value of $n$ that Joshua found?
2009 Indonesia TST, 1
2008 persons take part in a programming contest. In one round, the 2008 programmers are divided into two groups. Find the minimum number of groups such that every two programmers ever be in the same group.
2019 Dutch BxMO TST, 3
Let $x$ and $y$ be positive real numbers.
1. Prove: if $x^3 - y^3 \ge 4x$, then $x^2 > 2y$.
2. Prove: if $x^5 - y^3 \ge 2x$, then $x^3 \ge 2y$.
2010 Rioplatense Mathematical Olympiad, Level 3, 1
Suppose $a$, $b$, $c$, and $d$ are distinct positive integers such that $a^b$ divides $b^c$, $b^c$ divides $c^d$, and $c^d$ divides $d^a$.
[list](a) Is it possible to determine which of the numbers $a$, $b$, $c$, $d$ is the smallest?
(b) Is it possible to determine which of the numbers $a$, $b$, $c$, $d$ is the largest?[/list]
2015 Greece Team Selection Test, 4
Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfy $yf(x)+f(y) \geq f(xy)$