This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2014 Belarus Team Selection Test, 2

Given positive real numbers $a,b,c$ with $ab+bc+ca\ge a+b+c$ , prove that $$(a + b + c)(ab + bc+ca) + 3abc \ge 4(ab + bc + ca).$$ (I. Gorodnin)

1984 Dutch Mathematical Olympiad, 3

For $n = 1,2,3,...$. $a_n$ is defined by: $$a_n =\frac{1 \cdot 4 \cdot 7 \cdot ... (3n-2)}{2 \cdot 5 \cdot 8 \cdot ... (3n-1)}$$ Prove that for every $n$ holds that $$\frac{1}{\sqrt{3n+1}}\le a_n \le \frac{1}{\sqrt[3]{3n+1}}$$

1984 IMO Longlists, 60

Determine all pairs $(a, b)$ of positive real numbers with $a \neq 1$ such that \[\log_a b < \log_{a+1} (b + 1).\]

2012 ISI Entrance Examination, 4

Prove that the polynomial equation $x^{8}-x^{7}+x^{2}-x+15=0$ has no real solution.

2009 USAMTS Problems, 1

Jeremy has a magic scale, each side of which holds a positive integer. He plays the following game: each turn, he chooses a positive integer $n$. He then adds $n$ to the number on the left side of the scale, and multiplies by $n$ the number on the right side of the scale. (For example, if the turn starts with $4$ on the left and $6$ on the right, and Jeremy chooses $n = 3$, then the turn ends with $7$ on the left and $18$ on the right.) Jeremy wins if he can make both sides of the scale equal. (a) Show that if the game starts with the left scale holding $17$ and the right scale holding $5$, then Jeremy can win the game in $4$ or fewer turns. (b) Prove that if the game starts with the right scale holding $b$, where $b\geq 2$, then Jeremy can win the game in $b-1$ or fewer turns.

2007 Mediterranean Mathematics Olympiad, 4

Let $x > 1$ be a non-integer number. Prove that \[\biggl( \frac{x+\{x\}}{[x]} - \frac{[x]}{x+\{x\}} \biggr) + \biggl( \frac{x+[x]}{ \{x \} } - \frac{ \{ x \}}{x+[x]} \biggr) > \frac 92 \]

2012 Indonesia TST, 3

Tags: inequalities
Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ be positive reals such that \[a_1 + b_1 = a_2 + b_2 = \ldots + a_n + b_n\] and \[\sqrt[n]{\dfrac{a_1a_2\ldots a_n}{b_1b_2\ldots b_n}} \ge n.\] Prove that \[\sqrt[n]{\dfrac{a_1a_2\ldots a_n}{b_1b_2\ldots b_n}} \ge \dfrac{a_1+a_2+\ldots+a_n}{b_1+b_2+\ldots+b_n}.\]

1987 Romania Team Selection Test, 5

Let $A$ be the set $\{1,2,\ldots,n\}$, $n\geq 2$. Find the least number $n$ for which there exist permutations $\alpha$, $\beta$, $\gamma$, $\delta$ of the set $A$ with the property: \[ \sum_{i=1}^n \alpha(i) \beta (i) = \dfrac {19}{10} \sum^n_{i=1} \gamma(i)\delta(i) . \] [i]Marcel Chirita[/i]

2004 All-Russian Olympiad Regional Round, 10.1

The sum of positive numbers $a, b, c$ is equal to $\pi/2$. Prove that $$\cos a + \cos b + \cos c > \sin a + \sin b + \sin c.$$

2003 Hungary-Israel Binational, 1

Tags: inequalities
If $x_{1}, x_{2}, . . . , x_{n}$ are positive numbers, prove the inequality $\frac{x_{1}^{3}}{x_{1}^{2}+x_{1}x_{2}+x_{2}^{2}}+\frac{x_{2}^{3}}{x_{2}^{2}+x_{2}x_{3}+x_{3}^{2}}+...+\frac{x_{n}^{3}}{x_{n}^{2}+x_{n}x_{1}+x_{1}^{2}}\geq\frac{x_{1}+x_{2}+...+x_{n}}{3}$.

2017 Saudi Arabia BMO TST, 1

Let $a, b, c$ be positive real numbers. Prove that $$\frac{a(b^2 + c^2)}{(b + c)(a^2 + bc)} + \frac{b(c^2 + a^2)}{(c + a)(b^2 + ca)} + \frac{c(a^2 + b^2)}{(a + b)(c^2 + ab)} \ge \frac32$$

2014 Taiwan TST Round 1, 1

Prove that for positive reals $a$, $b$, $c$ we have \[ 3(a+b+c) \ge 8\sqrt[3]{abc} + \sqrt[3]{\frac{a^3+b^3+c^3}{3}}. \]

2008 IMC, 4

We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$. For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?

MOAA Individual Speed General Rounds, 2021.4

Let $a$, $b$, and $c$ be real numbers such that $0\le a,b,c\le 5$ and $2a + b + c = 10$. Over all possible values of $a$, $b$, and $c$, determine the maximum possible value of $a + 2b + 3c$. [i]Proposed by Andrew Wen[/i]

2018 South East Mathematical Olympiad, 1

Assume $c$ is a real number. If there exists $x\in[1,2]$ such that $\max\left\{\left |x+\frac cx\right |, \left |x+\frac cx + 2\right |\right\}\geq 5$, please find the value range of $c$.

2005 Germany Team Selection Test, 1

Find all monotonically increasing or monotonically decreasing functions $f: \mathbb{R}_+\to\mathbb{R}_+$ which satisfy the equation $f\left(xy\right)\cdot f\left(\frac{f\left(y\right)}{x}\right)=1$ for any two numbers $x$ and $y$ from $\mathbb{R}_+$. Hereby, $\mathbb{R}_+$ is the set of all positive real numbers. [i]Note.[/i] A function $f: \mathbb{R}_+\to\mathbb{R}_+$ is called [i]monotonically increasing[/i] if for any two positive numbers $x$ and $y$ such that $x\geq y$, we have $f\left(x\right)\geq f\left(y\right)$. A function $f: \mathbb{R}_+\to\mathbb{R}_+$ is called [i]monotonically decreasing[/i] if for any two positive numbers $x$ and $y$ such that $x\geq y$, we have $f\left(x\right)\leq f\left(y\right)$.

1988 IMO Longlists, 55

Suppose $\alpha_i > 0, \beta_i > 0$ for $1 \leq i \leq n, n > 1$ and that \[ \sum^n_{i=1} \alpha_i = \sum^n_{i=1} \beta_i = \pi. \] Prove that \[ \sum^n_{i=1} \frac{\cos(\beta_i)}{\sin(\alpha_i)} \leq \sum^n_{i=1} \cot(\alpha_i). \]

1996 Estonia National Olympiad, 1

Prove that for any positive numbers $x,y$ it holds that $x^xy^y \ge x^yy^x$.

2016 Junior Balkan MO, 2

Tags: inequalities
Let $a,b,c $be positive real numbers.Prove that $\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}$.

2003 India Regional Mathematical Olympiad, 4

Find the number of ordered triples $(x,y,z)$ of non-negative integers satisfying (i) $x \leq y \leq z$ (ii) $x + y + z \leq 100.$

2014 Korea Junior Math Olympiad, 2

Let there be $2n$ positive reals $a_1,a_2,...,a_{2n}$. Let $s = a_1 + a_3 +...+ a_{2n-1}$, $t = a_2 + a_4 + ... + a_{2n}$, and $x_k = a_k + a_{k+1} + ... + a_{k+n-1}$ (indices are taken modulo $2n$). Prove that $$\frac{s}{x_1}+\frac{t}{x_2}+\frac{s}{x_3}+\frac{t}{x_4}+...+\frac{s}{x_{2n-1}}+\frac{t}{x_{2n}}>\frac{2n^2}{n+1}$$

V Soros Olympiad 1998 - 99 (Russia), 10.8

It is known that for all $x$ such that $|x| < 1$, the following inequality holds $$ax^2+bx+c\le \frac{1}{\sqrt{1-x^2}}$$Find the greatest value of $a + 2c$.

1990 Vietnam Team Selection Test, 2

Given a tetrahedron such that product of the opposite edges is $ 1$. Let the angle between the opposite edges be $ \alpha$, $ \beta$, $ \gamma$, and circumradii of four faces be $ R_1$, $ R_2$, $ R_3$, $ R_4$. Prove that \[ \sin^2\alpha \plus{} \sin^2\beta \plus{} \sin^2\gamma\ge\frac {1}{\sqrt {R_1R_2R_3R_4}} \]

2005 Hong kong National Olympiad, 4

Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$. Prove that\[ 6(a^3+b^3+c^3+d^3)\ge(a^2+b^2+c^2+d^2)+\frac{1}{8} \]

2016 EGMO TST Turkey, 1

Tags: inequalities
Prove that \[ x^4y+y^4z+z^4x+xyz(x^3+y^3+z^3) \geq (x+y+z)(3xyz-1) \] for all positive real numbers $x, y, z$.