This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2011 India Regional Mathematical Olympiad, 3

Let $a,b,c>0.$ If $\frac 1a,\frac 1b,\frac 1c$ are in arithmetic progression, and if $a^2+b^2,b^2+c^2,c^2+a^2$ are in geometric progression, show that $a=b=c.$

2018 Greece Team Selection Test, 1

Tags: inequalities
If $x, y, z$ are positive real numbers such that $x + y + z = 9xyz.$ Prove that: $$\frac {x} {\sqrt {x^2+2yz+2}}+\frac {y} {\sqrt {y^2+2zx+2}}+\frac {z} {\sqrt {z^2+2xy+2}}\ge 1.$$ Consider when equality applies.

2017 China Team Selection Test, 3

Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\cup B)+f(A\cap B)\leq f(A)+f(B)$; $(2)$ For any $A\subset B\subset S$, $f(A)\leq f(B)$; $(3)$ For any $k,j\in S$,$$f(\{1,2,\ldots,k+1\})\geq f(\{1,2,\ldots,k\}\cup \{j\});$$ $(4)$ For the empty set $\varnothing$, $f(\varnothing)=0$. Confirm that for any three-element subset $T$ of $S$,the inequality $$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$ holds.

2002 Baltic Way, 12

A set $S$ of four distinct points is given in the plane. It is known that for any point $X\in S$ the remaining points can be denoted by $Y,Z$ and $W$ so that $|XY|=|XZ|+|XW|$ Prove that all four points lie on a line.

2011 Purple Comet Problems, 21

If a, b, and c are non-negative real numbers satisfying $a + b + c = 400$, fi nd the maximum possible value of $\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}$.

2010 Indonesia TST, 4

Prove that for all integers $ m$ and $ n$, the inequality \[ \dfrac{\phi(\gcd(2^m \plus{} 1,2^n \plus{} 1))}{\gcd(\phi(2^m \plus{} 1),\phi(2^n \plus{} 1))} \ge \dfrac{2\gcd(m,n)}{2^{\gcd(m,n)}}\] holds. [i]Nanang Susyanto, Jogjakarta [/i]

2003 Bulgaria National Olympiad, 2

Let $a,b,c$ be rational numbers such that $a+b+c$ and $a^2+b^2+c^2$ are [b]equal[/b] integers. Prove that the number $abc$ can be written as the ratio of a perfect cube and a perfect square which are relatively prime.

1975 Swedish Mathematical Competition, 3

Show that \[ a^n + b^n + c^n \geq ab^{n-1} + bc^{n-1} + ca^{n-1} \] for real $a,b,c \geq 0$ and $n$ a positive integer.

1969 Czech and Slovak Olympiad III A, 4

Determine all complex numbers $z$ such that \[\Bigl|z-\bigl|z+|z|\bigr|\Bigr|-|z|\sqrt3\ge0\] and draw the set of all such $z$ in complex plane.

2002 Mediterranean Mathematics Olympiad, 4

If $a, b, c$ are non-negative real numbers with $ a^2 \plus{} b^2 \plus{} c^2 \equal{} 1$, prove that: \[ \frac {a}{b^2 \plus{} 1} \plus{} \frac {b}{c^2 \plus{} 1} \plus{} \frac {c}{a^2 \plus{} 1} \geq \frac {3}{4}(a\sqrt {a} \plus{} b\sqrt {b} \plus{} c\sqrt {c})^2\]

2019 CHKMO, 1

Given that $a,b$, and $c$ are positive real numbers such that $ab + bc + ca \geq 1$, prove that \[ \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq \frac{\sqrt{3}}{abc} .\]

V Soros Olympiad 1998 - 99 (Russia), 11.7

Prove that for all positive and admissible values of $x$ the following inequality holds: $$\sin x + arc \sin x>2x$$

2019 Latvia Baltic Way TST, 4

Let $P(x)$ be a polynomial with degree $n$ and real coefficients. For all $0 \le y \le 1$ holds $\mid p(y) \mid \le 1$. Prove that $p(-\frac{1}{n}) \le 2^{n+1} -1$

2011 ELMO Shortlist, 5

Given positive reals $x,y,z$ such that $xy+yz+zx=1$, show that \[\sum_{\text{cyc}}\sqrt{(xy+kx+ky)(xz+kx+kz)}\ge k^2,\]where $k=2+\sqrt{3}$. [i]Victor Wang.[/i]

Revenge ELMO 2023, 1

In cyclic quadrilateral $ABCD$ with circumcenter $O$ and circumradius $R$, define $X=\overline{AB}\cap\overline{CD}$, $Y=\overline{AC}\cap \overline{BD}$, and $Z=\overline{AD}\cap\overline{BC}$. Prove that \[OX^2+OY^2+OZ^2\ge 2R^2+2[ABCD].\] [i]Rohan Bodke[/i]

1987 Spain Mathematical Olympiad, 2

Show that for each natural number $n > 1$ $1 \cdot \sqrt{{n \choose 1}}+ 2 \cdot \sqrt{{n \choose 2}}+...+n \cdot \sqrt{{n \choose n}} <\sqrt{2^{n-1}n^3}$

1976 Yugoslav Team Selection Test, Problem 3

Tags: inequalities
Find the minimum and maximum values of the function $$f(x,y,z,t)=\frac{ax^2+by^2}{ax+by}+\frac{az^2+bt^2}{az+bt},~(a>0,b>0),$$given that $x+z=y+t=1$, and $x,y,z,t\ge0$.

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

1977 Vietnam National Olympiad, 1

Find all real $x$ such that $ \sqrt{x - \frac{1}{x}} + \sqrt{1 - \frac{1}{x}}> \frac{x - 1}{x}$

2020 Jozsef Wildt International Math Competition, W34

Let $a,b,c>0.$ Prove that$$\frac{a^3+b^2c+bc^2}{bc}+\frac{b^3+c^2a+ca^2}{ca}+\frac{c^3+a^2b+ab^2}{ab}\geq 3(a+b+c)$$ $$\frac{bc}{a^3+b^2c+bc^2}+\frac{ca}{b^3+c^2a+ca^2}+\frac{ab}{c^3+a^2b+ab^2}\leq \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$$

2005 Korea Junior Math Olympiad, 7

If positive reals $ x_1,x_2,\cdots,x_n $ satisfy $\sum_{i=1}^{n}x_i=1.$ Prove that$$\sum_{i=1}^{n}\frac{1}{1+\sum_{j=1}^{i}x_j}<\sqrt{\frac{2}{3}\sum_{i=1}^{n}\frac{1}{x_i}} $$

2017 Romania National Olympiad, 3

Let $n \in N, n\ge 2$, and $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$ be real positive numbers such that $$\frac{a_1}{b_1} \le \frac{a_2}{b_2} \le ... \le\frac{a_n}{b_n}.$$ Find the largest real $c$ so that $$(a_1-b_1c)x_1+(a_2-b_2c)x_2+...+(a_n-b_nc)x_n \ge 0,$$ for every $x_1, x_2,..., x_n > 0$, with $x_1\le x_2\le ...\le x_n$.

2011 Romania National Olympiad, 2

Let $a, b, c $ be distinct positive integers. a) Prove that $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$. b) if, moreover, $ab + ac + bc +3 = abc > 0,$ show that $$(a -1)(b -1)+(a -1)(c -1)+(b -1)(c -1) \ge 6.$$

2012 Bosnia And Herzegovina - Regional Olympiad, 4

Prove the inequality: $$\frac{A+a+B+b}{A+a+B+b+c+r}+\frac{B+b+C+c}{B+b+C+c+a+r}>\frac{C+c+A+a}{C+c+A+a+b+r}$$ where $A$, $B$, $C$, $a$, $b$, $c$ and $r$ are positive real numbers

2007 Princeton University Math Competition, 6

Tags: inequalities
If $a, b, c, d$ are reals with $a \ge b \ge c \ge d \ge 0$ and $b(b-a)+c(c-b)+d(d-c) \le 2 - \frac{a^2}{2}$, find the minimum value of the expression \begin{align*}\frac{1}{b+2006c-2006d}+\frac{1}{a+2006b-2006c-d} + \frac{1}{2007a-2006b-c+d} + \frac{1}{a-b+c+2006d}.\end{align*}