This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2013 India IMO Training Camp, 1

Let $a, b, c$ be positive real numbers such that $a + b + c = 1$. If $n$ is a positive integer then prove that \[ \frac{(3a)^n}{(b + 1)(c + 1)} + \frac{(3b)^n}{(c + 1)(a + 1)} + \frac{(3c)^n}{(a + 1)(b + 1)} \ge \frac{27}{16} \,. \]

2011 Vietnam National Olympiad, 1

Tags: inequalities
Prove that if $x>0$ and $n\in\mathbb N,$ then we have \[\frac{x^n(x^{n+1}+1)}{x^n+1}\leq\left(\frac {x+1}{2}\right)^{2n+1}.\]

2006 China Team Selection Test, 2

Given three positive real numbers $ x$, $ y$, $ z$ such that $ x \plus{} y \plus{} z \equal{} 1$, prove that $ \frac {xy}{\sqrt {xy \plus{} yz}} \plus{} \frac {yz}{\sqrt {yz \plus{} zx}} \plus{} \frac {zx}{\sqrt {zx \plus{} xy}} \le \frac {\sqrt {2}}{2}$.

2003 Junior Macedonian Mathematical Olympiad, Problem 4

Tags: inequalities
Let $x$, $y$ and $z$ be positive real numbers such that $x+y+z = 1$. Prove the inequality: $$\frac{x^2}{1+y}+\frac{y^2}{1+z} +\frac{z^2}{1+x} \leq 1$$

2013 International Zhautykov Olympiad, 3

Tags: inequalities
Let $a, b, c$, and $d$ be positive real numbers such that $abcd = 1$. Prove that \[\frac{(a-1)(c+1)}{1+bc+c} + \frac{(b-1)(d+1)}{1+cd+d} + \frac{(c-1)(a+1)}{1+da+a} + \frac{(d-1)(b+1)}{1+ab+b} \geq 0.\] [i]Proposed by Orif Ibrogimov, Uzbekistan.[/i]

1994 Irish Math Olympiad, 3

Tags: inequalities
Prove that for every integer $ n>1$, $ n((n\plus{}1)^{\frac{2}{n}}\minus{}1)<\displaystyle\sum_{i\equal{}1}^{n}\frac{2i\plus{}1}{i^2}<n(1\minus{}n^{\minus{}\frac{2}{n\minus{}1}})\plus{}4$.

2006 Kyiv Mathematical Festival, 2

Tags: inequalities
See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Let $x,y>0$ and $xy\ge1.$ Prove that $x^3+y^3+4xy\ge x^2+y^2+x+y+2.$ Let $x,y>0$ and $xy\ge1.$ Prove that $2(x^3+y^3+xy+x+y)\ge5(x^2+y^2).$

2010 Baltic Way, 2

Let $x$ be a real number such that $0<x<\frac{\pi}{2}$. Prove that \[\cos^2(x)\cot (x)+\sin^2(x)\tan (x)\ge 1\]

1979 USAMO, 3

Given three identical $n$- faced dice whose corresponding faces are identically numbered with arbitrary integers. Prove that if they are tossed at random, the probability that the sum of the bottom three face numbers is divisible by three is greater than or equal to $\frac{1}{4}$.

2004 Junior Balkan Team Selection Tests - Moldova, 2

Let $n \in N^*$ . Let $a_1, a_2..., a_n$ be real such that $a_1 + a_2 +...+ a_n \ge 0$. Prove the inequality $\sqrt{a_1^2+1}+\sqrt{a_2^2+1}+...+\sqrt{a_1^2+1}\ge \sqrt{2n(a_1 + a_2 +...+ a_n )}$.

2004 IMO Shortlist, 1

Let $n \geq 3$ be an integer. Let $t_1$, $t_2$, ..., $t_n$ be positive real numbers such that \[n^2 + 1 > \left( t_1 + t_2 + \cdots + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + \cdots + \frac{1}{t_n} \right).\] Show that $t_i$, $t_j$, $t_k$ are side lengths of a triangle for all $i$, $j$, $k$ with $1 \leq i < j < k \leq n$.

2021 Latvia Baltic Way TST, P1

Tags: inequalities
Prove that for positive real numbers $a,b,c$ satisfying $abc=1$ the following inequality holds: $$ \frac{a}{b(1+c)} +\frac{b}{c(1+a)}+\frac{c}{a(1+b)} \ge \frac{3}{2} $$

1980 Vietnam National Olympiad, 2

Let $m_1, m_2, \cdots ,m_k$ be positive numbers with the sum $S$. Prove that \[\displaystyle\sum_{i=1}^k\left(m_i +\frac{1}{m_i}\right)^2 \ge k\left(\frac{k}{S}+\frac{S}{k}\right)^2\]

1960 IMO, 2

For what values of the variable $x$ does the following inequality hold: \[ \dfrac{4x^2}{(1-\sqrt{2x+1})^2}<2x+9 \ ? \]

2003 Austrian-Polish Competition, 5

A triangle with sides a, b, c has area S. The distances of its centroid from the vertices are x, y, z. Show that: if (x + y + z)^2 ≤ (a^2 + b^2 + c^2)/2 + 2S√3, then the triangle is equilateral.

1998 Brazil National Olympiad, 3

Two mathematicians, lost in Berlin, arrived on the corner of Barbarossa street with Martin Luther street and need to arrive on the corner of Meininger street with Martin Luther street. Unfortunately they don't know which direction to go along Martin Luther Street to reach Meininger Street nor how far it is, so they must go fowards and backwards along Martin Luther street until they arrive on the desired corner. What is the smallest value for a positive integer $k$ so that they can be sure that if there are $N$ blocks between Barbarossa street and Meininger street then they can arrive at their destination by walking no more than $kN$ blocks (no matter what $N$ turns out to be)?

2019 Regional Olympiad of Mexico Southeast, 5

Tags: inequalities , set
Let $n$ a natural number and $A=\{1, 2, 3, \cdots, 2^{n+1}-1\}$. Prove that if we choose $2n+1$ elements differents of the set $A$, then among them are three distinct number $a,b$ and $c$ such that $$bc<2a^2<4bc$$

2010 Contests, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

2017 ELMO Shortlist, 2

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all real numbers $a,b,$ and $c$: (i) If $a+b+c\ge 0$ then $f(a^3)+f(b^3)+f(c^3)\ge 3f(abc).$ (ii) If $a+b+c\le 0$ then $f(a^3)+f(b^3)+f(c^3)\le 3f(abc).$ [i]Proposed by Ashwin Sah[/i]

Russian TST 2018, P2

An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have $$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$ Find the largest constant $K = K(n)$ such that $$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$ holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.

2010 Iran Team Selection Test, 2

Find all non-decreasing functions $f:\mathbb R^+\cup\{0\}\rightarrow\mathbb R^+\cup\{0\}$ such that for each $x,y\in \mathbb R^+\cup\{0\}$ \[f\left(\frac{x+f(x)}2+y\right)=2x-f(x)+f(f(y)).\]

2002 China Western Mathematical Olympiad, 2

Given a positive integer $ n$, find all integers $ (a_{1},a_{2},\cdots,a_{n})$ satisfying the following conditions: $ (1): a_{1}\plus{}a_{2}\plus{}\cdots\plus{}a_{n}\ge n^2;$ $ (2): a_{1}^2\plus{}a_{2}^2\plus{}\cdots\plus{}a_{n}^2\le n^3\plus{}1.$

2020 Jozsef Wildt International Math Competition, W57

In all triangles $ABC$ does it hold that: $$\sum\sin^2\frac A2\cos^2A\ge\frac{3\left(s^2-(2R+r)^2\right)}{8R^2}$$ [i]Proposed by Mihály Bencze and Marius Drăgan[/i]

2017 Macedonia JBMO TST, 3

Tags: inequalities
Let $x,y,z$ be positive reals such that $xyz=1$. Show that $$\frac{x^2+y^2+z}{x^2+2} + \frac{y^2+z^2+x}{y^2+2} + \frac{z^2+x^2+y}{z^2+2} \geq 3.$$ When does equality happen?

2006 Estonia Math Open Junior Contests, 10

Tags: inequalities
Let a, b, c be positive integers. Prove that the inequality \[ (x\minus{}y)^a(x\minus{}z)^b(y\minus{}z)^c \ge 0 \] holds for all reals x, y, z if and only if a, b, c are even.