Found problems: 6530
1986 National High School Mathematics League, 1
Let $-1<a<0$, $\theta=\arcsin a$. Then the solution set to the inequality $\sin x<a$ is
$\text{(A)}\{x|2n\pi+\theta<x<(2n+1)\pi-\theta,n\in\mathbb{Z}\}$
$\text{(B)}\{x|2n\pi-\theta<x<(2n+1)\pi+\theta,n\in\mathbb{Z}\}$
$\text{(C)}\{x|(2n-1)\pi+\theta<x<2n\pi-\theta,n\in\mathbb{Z}\}$
$\text{(D)}\{x|(2n-1)\pi-\theta<x<2n\pi+\theta,n\in\mathbb{Z}\}$
2016 China Girls Math Olympiad, 4
Let $n$ is a positive integers ,$a_1,a_2,\cdots,a_n\in\{0,1,\cdots,n\}$ . For the integer $j$ $(1\le j\le n)$ ,define $b_j$ is the number of elements in the set $\{i|i\in\{1,\cdots,n\},a_i\ge j\}$ .For example :When $n=3$ ,if $a_1=1,a_2=2,a_3=1$ ,then $b_1=3,b_2=1,b_3=0$ .
$(1)$ Prove that $$\sum_{i=1}^{n}(i+a_i)^2\ge \sum_{i=1}^{n}(i+b_i)^2.$$
$(2)$ Prove that $$\sum_{i=1}^{n}(i+a_i)^k\ge \sum_{i=1}^{n}(i+b_i)^k,$$
for the integer $k\ge 3.$
1951 Moscow Mathematical Olympiad, 189
Let $ABCD$ and $A'B'C'D'$ be two convex quadrilaterals whose corresponding sides are equal, i.e., $AB = A'B', BC = B'C'$, etc. Prove that if $\angle A > \angle A'$, then $\angle B < \angle B', \angle C > \angle C', \angle D < \angle D'$.
1972 Polish MO Finals, 3
Prove that there is a polynomial $P(x)$ with integer coefficients such that for all $x$ in the interval $\left[ \frac{1}{10}
, \frac{9}{10}\right]$ we have $$\left|P(x) -\frac12 \right| < \frac{ 1}{1000 }.$$
1998 China Team Selection Test, 3
For a fixed $\theta \in \lbrack 0, \frac{\pi}{2} \rbrack$, find the smallest $a \in \mathbb{R}^{+}$ which satisfies the following conditions:
[b]I. [/b] $\frac{\sqrt a}{\cos \theta} + \frac{\sqrt a}{\sin \theta} >
1$.
[b]II.[/b] There exists $x \in \lbrack 1 - \frac{\sqrt a}{\sin \theta},
\frac{\sqrt a}{\cos \theta} \rbrack$ such that $\lbrack (1 -
x)\sin \theta - \sqrt{a - x^2 \cos^{2} \theta} \rbrack^{2} +
\lbrack x\cos \theta - \sqrt{a - (1 - x)^2 \sin^{2} \theta}
\rbrack^{2} \leq a$.
2020 IMO Shortlist, A7
Let $n$ and $k$ be positive integers. Prove that for $a_1, \dots, a_n \in [1,2^k]$ one has
\[ \sum_{i = 1}^n \frac{a_i}{\sqrt{a_1^2 + \dots + a_i^2}} \le 4 \sqrt{kn}. \]
2007 Bulgaria Team Selection Test, 2
Let $n,k$ be positive integers such that $n\geq2k>3$ and $A= \{1,2,...,n\}.$ Find all $n$ and $k$ such that the number of $k$-element subsets of $A$ is $2n-k$ times bigger than the number of $2$-element subsets of $A.$
1996 Poland - Second Round, 3
$a,b,c \geq-3/4$ and $a+b+c=1$. Show that: $\frac{a}{1+a^{2}}+\frac{b}{1+b^{2}}+\frac{c}{1+c^{2}}\leq \frac{9}{10}$
1993 Vietnam Team Selection Test, 1
Let $H$, $I$, $O$ be the orthocenter, incenter and circumcenter of a triangle. Show that $2 \cdot IO \geq IH$. When does the equality hold ?
2009 Kazakhstan National Olympiad, 4
Let $a,b,c,d $-reals positive numbers. Prove inequality:
$\frac{a^2+b^2+c^2}{ab+bc+cd}+\frac{b^2+c^2+d^2}{bc+cd+ad}+\frac{a^2+c^2+d^2}{ab+ad+cd}+\frac{a^2+b^2+d^2}{ab+ad+bc} \geq 4$
1996 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle and $h_a$ be the altitude through $A$. Prove that \[ (b+c)^2 \geq a^2 + 4h_a ^2 . \]
1991 Czech And Slovak Olympiad IIIA, 3
For any permutation $p$ of the set $\{1,2,...,n\}$, let us denote $d(p) = |p(1)-1|+|p(2)-2|+...+|p(n)-n|$. Let $i(p)$ be the number of inversions of $p$, i.e. the number of pairs $1 \le i < j \le n$ with $p(i) > p(j)$. Prove that $d(p)\le 2i(p)$$.
2009 Hanoi Open Mathematics Competitions, 7
Let $a,b,c,d$ be positive integers such that $a+b+c+d=99$. Find the maximum and minimum of product $abcd$
2002 USA Team Selection Test, 1
Let $ ABC$ be a triangle, and $ A$, $ B$, $ C$ its angles. Prove that
\[ \sin\frac{3A}{2}+\sin\frac{3B}{2}+\sin\frac{3C}{2}\leq \cos\frac{A-B}{2}+\cos\frac{B-C}{2}+\cos\frac{C-A}{2}. \]
1998 USAMTS Problems, 4
Prove that if $0<x<\pi/2$, then $\sec^6 x+\csc^6 x+(\sec^6 x)(\csc^6 x)\geq 80$.
2021 Francophone Mathematical Olympiad, 1
Let $R$ and $S$ be the numbers defined by
\[R = \dfrac{1}{2} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \cdots \times \dfrac{223}{224} \text{ and } S = \dfrac{2}{3} \times \dfrac{4}{5} \times \dfrac{6}{7} \times \cdots \times \dfrac{224}{225}.\]Prove that $R < \dfrac{1}{15} < S$.
2024 New Zealand MO, 2
Prove the following inequality $$\dfrac{6}{2024^3} < \left(1-\dfrac{3}{4}\right)\left(1-\dfrac{3}{5}\right)\left(1-\dfrac{3}{6}\right)\left(1-\dfrac{3}{7}\right)\ldots\left(1-\dfrac{3}{2025}\right).$$
VI Soros Olympiad 1999 - 2000 (Russia), 11.3
The numbers $a, b$ and $c$ are such that $a^2 + b^2 + c^2 = 1$. Prove that $$a^4 + b^4 + c^4 + 2(ab^2 + bc^2 + ca^2)^2\le 1. $$ At what $a, b$ and $c$ does inequality turn into equality?
2000 Belarus Team Selection Test, 1.4
A closed pentagonal line is inscribed in a sphere of the diameter $1$, and has all edges of length $\ell$.
Prove that $\ell \le \sin \frac{2\pi}{5}$
.
1980 IMO, 23
Let $a, b$ be positive real numbers, and let $x, y$ be complex numbers such that $|x| = a$ and $|y| = b$. Find the minimal and maximal value of
\[\left|\frac{x + y}{1 + x\overline{y}}\right|\]
2010 AMC 12/AHSME, 22
What is the minimum value of $ f(x) \equal{} |x \minus{} 1| \plus{} |2x \minus{} 1| \plus{} |3x \minus{} 1| \plus{} \cdots \plus{} |119x \minus{} 1|$?
$ \textbf{(A)}\ 49 \qquad
\textbf{(B)}\ 50 \qquad
\textbf{(C)}\ 51 \qquad
\textbf{(D)}\ 52 \qquad
\textbf{(E)}\ 53$
2012 Junior Balkan Team Selection Tests - Romania, 1
Show that, for all positive real numbers $a, b, c$ such that $abc = 1$, the inequality $$\frac{1}{1 + a^2 + (b + 1)^2} +\frac{1}{1 + b^2 + (c + 1)^2} +\frac{1}{1 + c^2 + (a + 1)^2} \le \frac{1}{2}$$
2007 Gheorghe Vranceanu, 3
Let be a function $ s:\mathbb{N}^2\longrightarrow \mathbb{N} $ that sends $ (m,n) $ to the number of solutions in $ \mathbb{N}^n $ of the equation:
$$ x_1+x_2+\cdots +x_n=m $$
[b]1)[/b] Prove that:
$$ s(m+1,n+1)=s(m,n)+s(m,n+1) =\prod_{r=1}^n\frac{m-r+1}{r} ,\quad\forall m,n\in\mathbb{N} $$
[b]2)[/b] Find $ \max\left\{ a_1a_2\cdots a_{20}\bigg| a_1+a_2+\cdots +a_{20}=2007, a_1,a_2,\ldots a_{20}\in\mathbb{N} \right\} . $
2019 Teodor Topan, 4
Let be an odd natural number $ n, $ and $ n $ real numbers $ y_1\le y_2\le\cdots\le y_n $ whose sum is $ 0. $ Prove that
$$ (n+2)y_{\frac{n+1}{2}}^2\le y_1^2+y_2^2+\cdots +y_n^2, $$
and specify where equality is attained.
[i]Nicolae Bourbăcuț[/i]
2012 Canada National Olympiad, 1
Let $x,y$ and $z$ be positive real numbers. Show that $x^2+xy^2+xyz^2\ge 4xyz-4$.