Found problems: 6530
2015 Poland - Second Round, 2
Let $A$ be an integer and $A>1$. Let $a_{1}=A^{A}$, $a_{n+1}=A^{a_{n}}$ and $b_{1}=A^{A+1}$, $b_{n+1}=2^{b_{n}}$, $n=1, 2, 3, ...$. Prove that $a_{n}<b_{n}$ for each $n$.
1988 Swedish Mathematical Competition, 3
Show that if $x_1+x_2+x_3 = 0$ for real numbers $x_1,x_2,x_3$, then $x_1x_2+x_2x_3+x_3x_1\le 0$.
Find all $n \ge 4$ for which $x_1+x_2+...+x_n = 0$ implies $x_1x_2+x_2x_3+...+x_{n-1}x_n+x_nx_1 \le 0$.
2011 Putnam, B1
Let $h$ and $k$ be positive integers. Prove that for every $\varepsilon >0,$ there are positive integers $m$ and $n$ such that \[\varepsilon < \left|h\sqrt{m}-k\sqrt{n}\right|<2\varepsilon.\]
1913 Eotvos Mathematical Competition, 1
Prove that for every integer $n > 2$,
$$(1\cdot 2 \cdot 3 \cdot ... \cdot n)^2 > n^n.$$
2017 Turkey MO (2nd round), 5
Let $x_0,\dots,x_{2017}$ are positive integers and $x_{2017}\geq\dots\geq x_0=1$ such that $A=\{x_1,\dots,x_{2017}\}$ consists of exactly $25$ different numbers. Prove that $\sum_{i=2}^{2017}(x_i-x_{i-2})x_i\geq 623$, and find the number of sequences that holds the case of equality.
1999 German National Olympiad, 5
Consider the following inequality for real numbers $x,y,z$: $|x-y|+|y-z|+|z-x| \le a \sqrt{x^2 +y^2 +z^2}$ .
(a) Prove that the inequality is valid for $a = 2\sqrt2$
(b) Assuming that $x,y,z$ are nonnegative, show that the inequality is also valid for $a = 2$.
2017 Pan-African Shortlist, A6
Let $n \geq 1$ be an integer, and $a_0, a_1, \dots, a_{n-1}$ be real numbers such that
\[
1 \geq a_{n-1} \geq a_{n-2} \geq \dots \geq a_1 \geq a_0 \geq 0.
\]
We assume that $\lambda$ is a real root of the polynomial
\[
x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.
\]
Prove that $|\lambda| \leq 1$.
1994 Hungary-Israel Binational, 1
Let $ m$ and $ n$ be two distinct positive integers. Prove that there exists a real number $ x$ such that $ \frac {1}{3}\le\{xn\}\le\frac {2}{3}$ and $ \frac {1}{3}\le\{xm\}\le\frac {2}{3}$. Here, for any real number $ y$, $ \{y\}$ denotes the fractional part of $ y$. For example $ \{3.1415\} \equal{} 0.1415$.
2011 Postal Coaching, 5
Let $<a_n>$ be a sequence of non-negative real numbers such that $a_{m+n} \le a_m +a_n$ for all $m,n \in \mathbb{N}$.
Prove that
\[\sum_{k=1}^{N} \frac{a_k}{k^2}\ge \frac{a_N}{4N}\ln N\]
for any $N \in \mathbb{N}$, where $\ln$ denotes the natural logarithm.
2023 Euler Olympiad, Round 2, 5
Find the smallest constant M, so that for any real numbers $a_1, a_2, \dots a_{2023} \in [4, 6]$ and $b_1, b_2, \dots b_{2023} \in [9, 12] $ following inequality holds:
$$ \sqrt{a_1^2 + a_2^2 + \dots + a_{2023}^2} \cdot \sqrt{b_1^2 + b_2^2 + \dots + b_{2023}^2} \leq M \cdot \left ( a_1 b_1 + a_2 b_2 + \dots + a_{2023} b_{2023} \right) $$
[i]Proposed by Zaza Meliqidze, Georgia[/i]
2010 Slovenia National Olympiad, 4
Let $x,y$ and $z$ be real numbers such that $0 \leq x,y,z \leq 1.$ Prove that
\[xyz+(1-x)(1-y)(1-z) \leq 1.\]
When does equality hold?
2013 IMO Shortlist, A4
Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]
2004 Baltic Way, 3
Let $p, q, r$ be positive real numbers and $n$ a natural number. Show that if $pqr = 1$, then \[ \frac{1}{p^n+q^n+1} + \frac{1}{q^n+r^n+1} + \frac{1}{r^n+p^n+1} \leq 1. \]
2016 CCA Math Bonanza, L4.3
Let $ABC$ be a non-degenerate triangle with perimeter $4$ such that $a=bc\sin^2A$. If $M$ is the maximum possible area of $ABC$ and $m$ is the minimum possible area of $ABC$, then $M^2+m^2$ can be expressed in the form $\frac{a}{b}$ for relatively prime positive integers $a$ and $b$. Compute $a+b$.
[i]2016 CCA Math Bonanza Lightning #4.3[/i]
2024 Thailand TST, 2
Let $a_1,a_2,\dots,a_{2023}$ be positive integers such that
[list=disc]
[*] $a_1,a_2,\dots,a_{2023}$ is a permutation of $1,2,\dots,2023$, and
[*] $|a_1-a_2|,|a_2-a_3|,\dots,|a_{2022}-a_{2023}|$ is a permutation of $1,2,\dots,2022$.
[/list]
Prove that $\max(a_1,a_{2023})\ge 507$.
2011 Singapore MO Open, 3
Let $x,y,z>0$ such that $\frac1x+\frac1y+\frac1z<\frac{1}{xyz}$. Show that
\[\frac{2x}{\sqrt{1+x^2}}+\frac{2y}{\sqrt{1+y^2}}+\frac{2z}{\sqrt{1+z^2}}<3.\]
2008 Turkey Team Selection Test, 3
The equation $ x^3\minus{}ax^2\plus{}bx\minus{}c\equal{}0$ has three (not necessarily different) positive real roots. Find the minimal possible value of $ \frac{1\plus{}a\plus{}b\plus{}c}{3\plus{}2a\plus{}b}\minus{}\frac{c}{b}$.
2010 India IMO Training Camp, 10
Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$
2013 India National Olympiad, 3
Let $a,b,c,d \in \mathbb{N}$ such that $a \ge b \ge c \ge d $. Show that the equation $x^4 - ax^3 - bx^2 - cx -d = 0$ has no integer solution.
1985 IMO Shortlist, 6
Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that
\[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]
2012 Benelux, 2
Find all quadruples $(a,b,c,d)$ of positive real numbers such that $abcd=1,a^{2012}+2012b=2012c+d^{2012}$ and $2012a+b^{2012}=c^{2012}+2012d$.
2014 Vietnam National Olympiad, 2
Find the maximum of
\[P=\frac{x^3y^4z^3}{(x^4+y^4)(xy+z^2)^3}+\frac{y^3z^4x^3}{(y^4+z^4)(yz+x^2)^3}+\frac{z^3x^4y^3}{(z^4+x^4)(zx+y^2)^3}\]
where $x,y,z$ are positive real numbers.
2016 Singapore Senior Math Olympiad, 3
For any integer $n \ge 1$, show that
$$\sum_{k=1}^{n} \frac{2^k}{\sqrt{k+0.5}} \le 2^{n+1}\sqrt{n+1}-\frac{4n^{3/2}}{3}$$
2005 China Northern MO, 2
Let $f$ be a function from R to R. Suppose we have:
(1) $f(0)=0$
(2) For all $x, y \in (-\infty, -1) \cup (1, \infty)$, we have $f(\frac{1}{x})+f(\frac{1}{y})=f(\frac{x+y}{1+xy})$.
(3) If $x \in (-1,0)$, then $f(x) > 0$.
Prove: $\sum_{n=1}^{+\infty} f(\frac{1}{n^2+7n+11}) > f(\frac12)$ with $n \in N^+$.
2015 Moldova Team Selection Test, 3
The tangents to the inscribed circle of $\triangle ABC$, which are parallel to the sides of the triangle and do not coincide with them, intersect the sides of the triangle in the points $M,N,P,Q,R,S$ such that $M,S\in (AB)$, $N,P\in (AC)$, $Q,R\in (BC)$. The interior angle bisectors of $\triangle AMN$, $\triangle BSR$ and $\triangle CPQ$, from points $A,B$ and respectively $C$ have lengths $l_{1}$ , $l_{2}$ and $l_{3}$ .\\
Prove the inequality: $\frac {1}{l^{2}_{1}}+\frac {1}{l^{2}_{2}}+\frac {1}{l^{2}_{3}} \ge \frac{81}{p^{2}}$ where $p$ is the semiperimeter of $\triangle ABC$ .