Found problems: 592
1979 IMO Shortlist, 11
Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.
2017 Junior Balkan Team Selection Tests - Romania, 2
a) Find :
$A=\{(a,b,c) \in \mathbb{R}^{3} | a+b+c=3 , (6a+b^2+c^2)(6b+c^2+a^2)(6c+a^2+b^2) \neq 0\}$
b) Prove that for any $(a,b,c) \in A$ next inequality hold :
\begin{align*}
\frac{a}{6a+b^2+c^2}+\frac{b}{6b+c^2+a^2}+\frac{c}{6c+a^2+b^2} \le \frac{3}{8}
\end{align*}
2009 JBMO Shortlist, 5
$\boxed{\text{A5}}$ Let $x,y,z$ be positive reals. Prove that $(x^2+y+1)(x^2+z+1)(y^2+x+1)(y^2+z+1)(z^2+x+1)(z^2+y+1)\geq (x+y+z)^6$
1967 IMO Shortlist, 3
Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]
2017 Azerbaijan Junior National Olympiad, P3
Show that $\frac{(x + y + z)^2}{3} \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}$ for all non-negative reals $x, y, z$.
2022 JBMO Shortlist, A6
Let $a, b,$ and $c$ be positive real numbers such that $a^2 + b^2 + c^2 = 3$. Prove that
$$\frac{a^2 + b^2}{2ab} + \frac{b^2 + c^2}{2bc} + \frac{c^2 + a^2}{2ca} + \frac{2(ab + bc + ca)}{3} \ge 5 + |(a - b)(b - c)(c - a)|.$$
2021 Thailand TST, 2
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of
$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$
[i]Israel[/i]
2020 Iran MO (2nd Round), P2
let $x,y,z$ be positive reals , such that $x+y+z=1399$ find the
$$\max( [x]y + [y]z + [z]x ) $$
( $[a]$ is the biggest integer not exceeding $a$)
1980 IMO Shortlist, 2
Define the numbers $a_0, a_1, \ldots, a_n$ in the following way:
\[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \]
Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]
2020 Baltic Way, 1
Let $a_0>0$ be a real number, and let
$$a_n=\frac{a_{n-1}}{\sqrt{1+2020\cdot a_{n-1}^2}}, \quad \textrm{for } n=1,2,\ldots ,2020.$$
Show that $a_{2020}<\frac1{2020}$.
2018 USAJMO, 2
Let \(a,b,c\) be positive real numbers such that \(a+b+c=4\sqrt[3]{abc}\). Prove that \[2(ab+bc+ca)+4\min(a^2,b^2,c^2)\ge a^2+b^2+c^2.\]
2015 Canadian Mathematical Olympiad Qualification, 5
Let $x$ and $y$ be positive real numbers such that $x + y = 1$. Show that $$\left( \frac{x+1}{x} \right)^2 + \left( \frac{y+1}{y} \right)^2 \geq 18.$$
2015 IMC, 10
Let $n$ be a positive integer, and let $p(x)$ be a polynomial of
degree $n$ with integer coefficients. Prove that
$$
\max_{0\le x\le1} \big|p(x)\big| > \frac1{e^n}.
$$
Proposed by Géza Kós, Eötvös University, Budapest
1967 IMO Longlists, 58
A linear binomial $l(z) = Az + B$ with complex coefficients $A$ and $B$ is given. It is known that the maximal value of $|l(z)|$ on the segment $-1 \leq x \leq 1$ $(y = 0)$ of the real line in the complex plane $z = x + iy$ is equal to $M.$ Prove that for every $z$
\[|l(z)| \leq M \rho,\]
where $\rho$ is the sum of distances from the point $P=z$ to the points $Q_1: z = 1$ and $Q_3: z = -1.$
KoMaL A Problems 2017/2018, A. 727
For any finite sequence $(x_1,\ldots,x_n)$, denote by $N(x_1,\ldots,x_n)$ the number of ordered index pairs $(i,j)$ for which $1 \le i<j\le n$ and $x_i=x_j$. Let $p$ be an odd prime, $1 \le n<p$, and let $a_1,a_2,\ldots,a_n$ and $b_1,b_2,\ldots,b_n$ be arbitrary residue classes modulo $p$. Prove that there exists a permutation $\pi$ of the indices $1,2,\ldots,n$ for which
\[N(a_1+b_{\pi(1)},a_2+b_{\pi(2)},\ldots,a_n+b_{\pi(n)})\le \min(N(a_1,a_2,\ldots,a_n),N(b_1,b_2,\ldots,b_n)).\]
2021-IMOC, A7
For any positive reals $a,b,c,d$ that satisfy $a^2 + b^2 + c^2 + d^2 = 4,$ show that
$$\frac{a^3}{a+b} + \frac{b^3}{b+c} + \frac{c^3}{c+d} + \frac{d^3}{d+a} + 4abcd \leq 6.$$
2022 China Second Round, 3
Let $a_1,a_2,\cdots ,a_{100}$ be non-negative integers such that
$(1)$ There are positive integers$ k\leq 100$ such that $a_1\leq a_2\leq \cdots\leq a_{k}$
and $a_i=0$ $(i>k);$
$(2)$ $ a_1+a_2+a_3+\cdots +a_{100}=100;$
$(3)$ $ a_1+2a_2+3a_3+\cdots +100a_{100}=2022.$
Find the minimum of $ a_1+2^2a_2+3^2a_3+\cdots +100^2a_{100}.$
2022 Brazil National Olympiad, 5
Let $n$ be a positive integer number. Define $S(n)$ to be the least positive integer such that $S(n) \equiv n \pmod{2}$, $S(n) \geq n$, and such that there are [b]not[/b] positive integers numbers $k,x_1,x_2,...,x_k$ such that $n=x_1+x_2+...+x_k$ and $S(n)=x_1^2+x_2^2+...+x_k^2$. Prove that there exists a real constant $c>0$ and a positive integer $n_0$ such that, for all $n \geq n_0$, $S(n) \geq cn^{\frac{3}{2}}$.
1992 IMO Shortlist, 18
Let $ \lfloor x \rfloor$ denote the greatest integer less than or equal to $ x.$ Pick any $ x_1$ in $ [0, 1)$ and define the sequence $ x_1, x_2, x_3, \ldots$ by $ x_{n\plus{}1} \equal{} 0$ if $ x_n \equal{} 0$ and $ x_{n\plus{}1} \equal{} \frac{1}{x_n} \minus{} \left \lfloor \frac{1}{x_n} \right \rfloor$ otherwise. Prove that
\[ x_1 \plus{} x_2 \plus{} \ldots \plus{} x_n < \frac{F_1}{F_2} \plus{} \frac{F_2}{F_3} \plus{} \ldots \plus{} \frac{F_n}{F_{n\plus{}1}},\]
where $ F_1 \equal{} F_2 \equal{} 1$ and $ F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n$ for $ n \geq 1.$
2019 Balkan MO Shortlist, A3
Let $a,b,c$ be real numbers such that $0 \leq a \leq b \leq c$ and $a+b+c=ab+bc+ca >0.$
Prove that $\sqrt{bc}(a+1) \geq 2$ and determine the equality cases.
(Edit: Proposed by sir Leonard Giugiuc, Romania)
2021 Germany Team Selection Test, 3
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of
$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$
[i]Israel[/i]
2024 Brazil Team Selection Test, 3
Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$
2012 JBMO ShortLists, 1
Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that
\[\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).\]
When does equality hold?
2024 Nepal Mathematics Olympiad (Pre-TST), Problem 2
Let, $\displaystyle{S =\sum_{i=1}^{k} {n_i}^2}$. Prove that for $n_i \in \mathbb{R}^+$
$$\sum_{i=1}^{k} \frac{n_i}{S-n_i^2} \geq \frac{4}{n_1+n_2+ \cdots+ n_k}$$
[i]Proposed by Kang Taeyoung, South Korea[/i]
2023 JBMO Shortlist, A3
Prove that for all non-negative real numbers $x,y,z$, not all equal to $0$, the following inequality holds
$\displaystyle \dfrac{2x^2-x+y+z}{x+y^2+z^2}+\dfrac{2y^2+x-y+z}{x^2+y+z^2}+\dfrac{2z^2+x+y-z}{x^2+y^2+z}\geq 3.$
Determine all the triples $(x,y,z)$ for which the equality holds.
[i]Milan Mitreski, Serbia[/i]