Found problems: 592
2009 Philippine MO, 4
Let $k$ be a positive real number such that $$\frac{1}{k+a} + \frac{1}{k+b} + \frac{1}{k+c} \leq 1$$ for any positive positive real numbers $a$, $b$ and $c$ with $abc = 1$. Find the minimum value of $k$.
1969 IMO Shortlist, 69
$(YUG 1)$ Suppose that positive real numbers $x_1, x_2, x_3$ satisfy
$x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$
Prove that:
$(a)$ None of $x_1, x_2, x_3$ equals $1$.
$(b)$ Exactly one of these numbers is less than $1.$
2016 India Regional Mathematical Olympiad, 4
Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Determine, with certainty, the largest possible value of the expression $$ \frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}$$
1968 IMO Shortlist, 12
If $a$ and $b$ are arbitrary positive real numbers and $m$ an integer, prove that
\[\Bigr( 1+\frac ab \Bigl)^m +\Bigr( 1+\frac ba \Bigl)^m \geq 2^{m+1}.\]
2022 Grosman Mathematical Olympiad, P4
Along a circle-shaped path are $100$ boys and $100$ girls. The distance between two points on the path is defined as the length of the smaller arc through which it is possible to get from one point to the other.
Prove that the sum of distances between pairs of the same gender is always less than or equal to the sum of distances between all pairs of a boy and a girl.
2020 IMO Shortlist, A1
[i]Version 1[/i]. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$,
\[
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x .
\]
[i]Version 2[/i]. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$,
\[
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x .
\]
2015 Saudi Arabia JBMO TST, 1
Let $a,b,c$ be positive real numbers. Prove that:
$\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$
2012 IFYM, Sozopol, 4
Prove that if $x$, $y$, and $z$ are non-negative numbers and $x^2+y^2+z^2=1$, then the following inequality is true:
$\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2 }\geq \frac{3\sqrt{3}}{2}$
2021 Greece JBMO TST, 1
If positive reals $x,y$ are such that $2(x+y)=1+xy$, find the minimum value of expression $$A=x+\frac{1}{x}+y+\frac{1}{y}$$
2020 JBMO TST of France, 4
$a, b, c$ are real positive numbers for which $a+b+c=3$. Prove that $a^{12}+b^{12}+c^{12}+8(ab+bc+ca) \geq 27$
2024 Belarus Team Selection Test, 1.3
Prove that for any real numbers $a,b,c,d \geq \frac{1}{3}$ the following inequality holds:
$$\sqrt{\frac{a^6}{b^4+c^3}+\frac{b^6}{c^4+d^3}+\frac{c^6}{d^4+a^3}+\frac{d^6}{a^4+b^3}}\geq \frac{a+b+c+d}{4}$$
[i]D. Zmiaikou[/i]
1969 IMO Shortlist, 35
$(HUN 2)$ Prove that $1+\frac{1}{2^3}+\frac{1}{3^3}+\cdots+\frac{1}{n^3}<\frac{5}{4}$
2020 Federal Competition For Advanced Students, P1, 1
Let $x, y$ and $z$ be positive real numbers such that $x \geq y+z$.
Proof that
$$\frac{x+y}{z} + \frac{y+z}{x} +\frac{z+x}{y} \geq 7$$
When does equality occur?
(Walther Janous)
2016 German National Olympiad, 6
Let \[ f(x_1,x_2,x_3,x_4,x_5,x_6,x_7)=x_1x_2x_4+x_2x_3x_5+x_3x_4x_6+x_4x_5x_7+x_5x_6x_1+x_6x_7x_2+x_7x_1x_3 \] be defined for non-negative real numbers $x_1,x_2,\dots,x_7$ with sum $1$.
Prove that $f(x_1,x_2,\dots,x_7)$ has a maximum value and find that value.
2023 Vietnam National Olympiad, 7
Let $\triangle{ABC}$ be a scalene triangle with orthocenter $H$ and circumcenter $O$. Incircle $(I)$ of the $\triangle{ABC}$ is tangent to the sides $BC,CA,AB$ at $M,N,P$ respectively. Denote $\Omega_A$ to be the circle passing through point $A$, external tangent to $(I)$ at $A'$ and cut again $AB,AC$ at $A_b,A_c$ respectively. The circles $\Omega_B,\Omega_C$ and points $B',B_a,B_c,C',C_a,C_b$ are defined similarly.
$a)$ Prove $B_cC_b+C_aA_c+A_bB_a \ge NP+PM+MN$.
$b)$ Suppose $A',B',C'$ lie on $AM,BN,CP$ respectively. Denote $K$ as the circumcenter of the triangle formed by lines $A_bA_c,B_cB_a,C_aC_b.$ Prove $OH//IK$.
1991 IMO Shortlist, 26
Let $ n \geq 2, n \in \mathbb{N}$ and let $ p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ satisfying $ \frac{1}{2} \leq p \leq 1,$ $ 0 \leq a_i,$ $ 0 \leq b_i \leq p,$ $ i \equal{} 1, \ldots, n,$ and \[ \sum^n_{i\equal{}1} a_i \equal{} \sum^n_{i\equal{}1} b_i.\] Prove the inequality: \[ \sum^n_{i\equal{}1} b_i \prod^n_{j \equal{} 1, j \neq i} a_j \leq \frac{p}{(n\minus{}1)^{n\minus{}1}}.\]
2020 DMO Stage 1, 3.
[b]Q.[/b] Prove that:
$$\sum_{\text{cyc}}\tan (\tan A) - 2 \sum_{\text{cyc}} \tan \left(\cot \frac{A}{2}\right) \geqslant -3 \tan (\sqrt 3)$$where $A, B$ and $C$ are the angles of an acute-angled $\triangle ABC$.
[i]Proposed by SA2018[/i]
2004 Mexico National Olympiad, 2
Find the maximum number of positive integers such that any two of them $a, b$ (with $a \ne b$) satisfy that$ |a - b| \ge \frac{ab}{100} .$
2018 Junior Balkan Team Selection Tests - Moldova, 3
Let $a,b,c \in\mathbb{R^*_+}$.Prove the inequality $\frac{a^2+4}{b+c}+\frac{b^2+9}{c+a}+\frac{c^2+16}{a+b}\ge9$.
1974 IMO Shortlist, 4
The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$
2004 China Western Mathematical Olympiad, 4
Suppose that $ a$, $ b$, $ c$ are positive real numbers, prove that
\[ 1 < \frac {a}{\sqrt {a^{2} \plus{} b^{2}}} \plus{} \frac {b}{\sqrt {b^{2} \plus{} c^{2}}} \plus{} \frac {c}{\sqrt {c^{2} \plus{} a^{2}}}\leq\frac {3\sqrt {2}}{2}
\]
2019 India Regional Mathematical Olympiad, 3
Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that
$$\frac{a}{a^2+b^3+c^3}+\frac{b}{b^2+a^3+c^3}+\frac{c}{c^2+a^3+b^3}\leq\frac{1}{5abc}$$
2018 Regional Competition For Advanced Students, 1
If $a, b$ are positive reals such that $a+b<2$. Prove that $$\frac{1}{1+a^2}+\frac{1}{1+b^2} \le \frac{2}{1+ab}$$ and determine all $a, b$ yielding equality.
[i]Proposed by Gottfried Perz[/i]
2001 China Team Selection Test, 2
Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds:
$\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$
2021 Science ON grade VIII, 4
Consider positive real numbers $x,y,z$. Prove the inequality
$$\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).$$
[i] (Vlad Robu \& Sergiu Novac)[/i]