This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2002 Rioplatense Mathematical Olympiad, Level 3, 4

Let $a, b$ and $c$ be positive real numbers. Show that $\frac{a+b}{c^2}+ \frac{c+a}{b^2}+ \frac{b+c}{a^2}\ge \frac{9}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

2024 Indonesia TST, 3

Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$

2016 Bulgaria JBMO TST, 2

a, b, c are positive real numbers and a+b+c=k. Find the minimum value of $ b^2/(ka+bc)^1/2+c^2/(kb+ac)^1/2+a^2/(kc+ab)^1/2 $

JOM 2015, 3

Let $ a, b, c $ be positive real numbers greater or equal to $ 3 $. Prove that $$ 3(abc+b+2c)\ge 2(ab+2ac+3bc) $$ and determine all equality cases.

2011 Greece JBMO TST, 1

a) Let $n$ be a positive integer. Prove that $ n\sqrt {x-n^2}\leq \frac {x}{2}$ , for $x\geq n^2$. b) Find real $x,y,z$ such that: $ 2\sqrt {x-1} +4\sqrt {y-4} + 6\sqrt {z-9} = x+y+z$

2018 Azerbaijan JBMO TST, 1

Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that: $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$

2004 Bulgaria Team Selection Test, 2

Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$

1967 IMO Longlists, 49

Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]

1977 IMO Shortlist, 7

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

1988 IMO Longlists, 42

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2008 Germany Team Selection Test, 1

Let $ A_0 \equal{} (a_1,\dots,a_n)$ be a finite sequence of real numbers. For each $ k\geq 0$, from the sequence $ A_k \equal{} (x_1,\dots,x_k)$ we construct a new sequence $ A_{k \plus{} 1}$ in the following way. 1. We choose a partition $ \{1,\dots,n\} \equal{} I\cup J$, where $ I$ and $ J$ are two disjoint sets, such that the expression \[ \left|\sum_{i\in I}x_i \minus{} \sum_{j\in J}x_j\right| \] attains the smallest value. (We allow $ I$ or $ J$ to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily. 2. We set $ A_{k \plus{} 1} \equal{} (y_1,\dots,y_n)$ where $ y_i \equal{} x_i \plus{} 1$ if $ i\in I$, and $ y_i \equal{} x_i \minus{} 1$ if $ i\in J$. Prove that for some $ k$, the sequence $ A_k$ contains an element $ x$ such that $ |x|\geq\frac n2$. [i]Author: Omid Hatami, Iran[/i]

2023 Junior Balkan Team Selection Tests - Romania, P2

Suppose that $a, b,$ and $c$ are positive real numbers such that $$a + b + c \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$ Find the largest possible value of the expression $$\frac{a + b - c}{a^3 + b^3 + abc} + \frac{b + c - a}{b^3 + c^3 + abc} + \frac{c + a - b}{c^3 + a^3 + abc}.$$

2021 Spain Mathematical Olympiad, 4

Let $a,b,c,d$ real numbers such that: $$ a+b+c+d=0 \text{ and } a^2+b^2+c^2+d^2 = 12 $$ Find the minimum and maximum possible values for $abcd$, and determine for which values of $a,b,c,d$ the minimum and maximum are attained.

1976 IMO Shortlist, 2

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

2021 Science ON grade VII, 3

Are there any real numbers $a,b,c$ such that $a+b+c=6$, $ab+bc+ca=9$ and $a^4+b^4+c^4=260$? What about if we let $a^4+b^4+c^4=210$? [i] (Andrei Bâra)[/i]

2023 All-Russian Olympiad Regional Round, 9.9

Find the largest real $m$, such that for all positive real $a, b, c$ with sum $1$, the inequality $\sqrt{\frac{ab} {ab+c}}+\sqrt{\frac{bc} {bc+a}}+\sqrt{\frac{ca} {ca+b}} \geq m$ is satisfied.

2006 Federal Math Competition of S&M, Problem 1

Let $x,y,z$ be positive numbers with the sum $1$. Prove that $$\frac x{y^2+z}+\frac y{z^2+x}+\frac z{x^2+y}\ge\frac94.$$

2018 USAMO, 1

Let \(a,b,c\) be positive real numbers such that \(a+b+c=4\sqrt[3]{abc}\). Prove that \[2(ab+bc+ca)+4\min(a^2,b^2,c^2)\ge a^2+b^2+c^2.\]

1983 Czech and Slovak Olympiad III A, 5

Find all pair $(x,y)$ of positive integers satisfying $$\left|\frac{x}{y}-\sqrt2\right|<\frac{1}{y^3}.$$

2008 India Regional Mathematical Olympiad, 3

Prove that for every positive integer $n$ and a non-negative real number $a$, the following inequality holds: $$n(n+1)a+2n \geqslant 4\sqrt{a}(\sqrt{1}+\sqrt{2}+\dots+\sqrt{n}).$$

2019 ELMO Shortlist, A1

Let $a$, $b$, $c$ be positive reals such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show that $$a^abc+b^bca+c^cab\ge 27bc+27ca+27ab.$$ [i]Proposed by Milan Haiman[/i]

2023 JBMO Shortlist, A2

For positive real numbers $x,y,z$ with $xy+yz+zx=1$, prove that $$\frac{2}{xyz}+9xyz \geq 7(x+y+z)$$

2019 Stars of Mathematics, 4

For positive real numbers $a_1, a_2, ..., a_n$ with product 1 prove: $$\left(\frac{a_1}{a_2}\right)^{n-1}+\left(\frac{a_2}{a_3}\right)^{n-1}+...+\left(\frac{a_{n-1}}{a_n}\right)^{n-1}+\left(\frac{a_n}{a_1}\right)^{n-1} \geq a_1^{2}+a_2^{2}+...+a_n^{2}$$ Proposed by Andrei Eckstein

2018 Balkan MO Shortlist, A1

Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that: $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$

2014 China Western Mathematical Olympiad, 1

Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.