This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

1989 IMO Shortlist, 16

The set $ \{a_0, a_1, \ldots, a_n\}$ of real numbers satisfies the following conditions: [b](i)[/b] $ a_0 \equal{} a_n \equal{} 0,$ [b](ii)[/b] for $ 1 \leq k \leq n \minus{} 1,$ \[ a_k \equal{} c \plus{} \sum^{n\minus{}1}_{i\equal{}k} a_{i\minus{}k} \cdot \left(a_i \plus{} a_{i\plus{}1} \right)\] Prove that $ c \leq \frac{1}{4n}.$

1967 IMO Longlists, 55

Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]

2022 IFYM, Sozopol, 5

Tags: algebra , inequality , sum
Prove that $\sum_{n=1}^{2022^{2022}} \frac{1}{\sqrt{n^3+2n^2+n}}<\frac{19}{10}$.

2015 JBMO TST-Turkey, 4

Tags: inequality
Prove that $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+2(a+b+c)$$ for the all $a,b,c$ positive real numbers satisfying $a^2+b^2+c^2+2abc \le 1$.

2021 Polish MO Finals, 4

Prove that for every pair of positive real numbers $a, b$ and for every positive integer $n$, $$(a+b)^n-a^n-b^n \ge \frac{2^n-2}{2^{n-2}} \cdot ab(a+b)^{n-2}.$$

2020 China Girls Math Olympiad, 2

Let $n$ be an integer and $n \geq 2$, $x_1, x_2, \cdots , x_n$ are arbitrary real number, find the maximum value of $$2\sum_{1\leq i<j \leq n}\left \lfloor x_ix_j \right \rfloor-\left ( n-1 \right )\sum_{i=1}^{n}\left \lfloor x_i^2 \right \rfloor $$

2023 China Girls Math Olympiad, 3

Let $a,b,c,d \in [0,1] .$ Prove that$$\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+d}+\frac{1}{1+d+a}\leq \frac{4}{1+2\sqrt[4]{abcd}}$$

2025 239 Open Mathematical Olympiad, 4

Positive numbers $a$, $b$ and $c$ are such that $a^2+b^2+c^2+abc=4$. Prove that \[\sqrt{2-a}+\sqrt{2-b}+\sqrt{2-c}\geqslant 2+\sqrt{(2-a)(2-b)(2-c)}.\]

1992 Irish Math Olympiad, 5

If, for $k=1,2,\dots ,n$, $a_k$ and $b_k$ are positive real numbers, prove that $$\sqrt[n]{a_1a_2\cdots a_n}+\sqrt[n]{b_1b_2\cdots b_n}\le \sqrt[n]{(a_1+b_1)(a_2+b_2)\cdots (a_n+b_n)};$$ and that equality holds if, and only if, $$\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots =\frac{a_n}{b_n}.$$

2020 Taiwan APMO Preliminary, P6

Let $a,b,c$ be positive reals. Find the minimum value of $$\dfrac{13a+13b+2c}{2a+2b}+\dfrac{24a-b+13c}{2b+2c}+\dfrac{(-a+24b+13c)}{2c+2a}$$. (1)What is the minimum value? (2)If the minimum value occurs when $(a,b,c)=(a_0,b_0,c_0)$,then find $\frac{b_0}{a_0}+\frac{c_0}{b_0}$.

2014 India PRMO, 14

Tags: inequality
One morning, each member of Manjul’s family drank an $8$-ounce mixture of coffee and milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Manjul drank $1/7$-th of the total amount of milk and $2/17$-th of the total amount of coffee. How many people are there in Manjul’s family?

2021 Greece Junior Math Olympiad, 1

If positive reals $x,y$ are such that $2(x+y)=1+xy$, find the minimum value of expression $$A=x+\frac{1}{x}+y+\frac{1}{y}$$

2023 JBMO Shortlist, A1

Prove that for all positive real numbers $a,b,c,d$, $$\frac{2}{(a+b)(c+d)+(b+c)(a+d)} \leq \frac{1}{(a+c)(b+d)+4ac}+\frac{1}{(a+c)(b+d)+4bd}$$ and determine when equality occurs.

2019 Junior Balkan Team Selection Tests - Romania, 3

Real numbers $a,b,c,d$ such that $|a|>1$ , $|b|>1$ , $|c|>1$ , $|d|>1$ and $ab(c+d)+dc(a+b)+a+b+c+d=0$ then prove that $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}+\frac{1}{d-1} >0$

2018 IFYM, Sozopol, 8

Prove that for every positive integer $n \geq 2$ the following inequality holds: $e^{n-1}n!<n^{n+\frac{1}{2}}$

2023 Taiwan TST Round 2, A

For each positive integer $k$ greater than $1$, find the largest real number $t$ such that the following hold: Given $n$ distinct points $a^{(1)}=(a^{(1)}_1,\ldots, a^{(1)}_k)$, $\ldots$, $a^{(n)}=(a^{(n)}_1,\ldots, a^{(n)}_k)$ in $\mathbb{R}^k$, we define the score of the tuple $a^{(i)}$ as \[\prod_{j=1}^{k}\#\{1\leq i'\leq n\textup{ such that }\pi_j(a^{(i')})=\pi_j(a^{(i)})\}\] where $\#S$ is the number of elements in set $S$, and $\pi_j$ is the projection $\mathbb{R}^k\to \mathbb{R}^{k-1}$ omitting the $j$-th coordinate. Then the $t$-th power mean of the scores of all $a^{(i)}$'s is at most $n$. Note: The $t$-th power mean of positive real numbers $x_1,\ldots,x_n$ is defined as \[\left(\frac{x_1^t+\cdots+x_n^t}{n}\right)^{1/t}\] when $t\neq 0$, and it is $\sqrt[n]{x_1\cdots x_n}$ when $t=0$. [i]Proposed by Cheng-Ying Chang and usjl[/i]

2024 Junior Macedonian Mathematical Olympiad, 1

Let $a, b$, and $c$ be positive real numbers. Prove that \[\frac{a^4 + 3}{b} + \frac{b^4 + 3}{c} + \frac{c^4 + 3}{a} \ge 12.\] When does equality hold? [i]Proposed by Petar Filipovski[/i]

2013 Baltic Way, 4

Prove that the following inequality holds for all positive real numbers $x,y,z$: \[\dfrac{x^3}{y^2+z^2}+\dfrac{y^3}{z^2+x^2}+\dfrac{z^3}{x^2+y^2}\ge \dfrac{x+y+z}{2}.\]

1990 IMO Longlists, 88

Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$. Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.

1969 IMO Shortlist, 64

$(USS 1)$ Prove that for a natural number $n > 2, (n!)! > n[(n - 1)!]^{n!}.$

1979 IMO Shortlist, 13

Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$

Azerbaijan Al-Khwarizmi IJMO TST 2025, 2

For $a,b,c$ positive real numbers satisfying $a^2+b^2+c^2 \geq 3$,show that: $\sqrt[3]{\frac{a^3+b^3+c^3}{3}}+\frac{a+b+c}{9} \geq \frac{4}{3}$.

1984 IMO Longlists, 20

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

1988 IMO, 1

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2018 German National Olympiad, 4

a) Let $a,b$ and $c$ be side lengths of a triangle with perimeter $4$. Show that \[a^2+b^2+c^2+abc<8.\] b) Is there a real number $d<8$ such that for all triangles with perimeter $4$ we have \[a^2+b^2+c^2+abc<d \quad\] where $a,b$ and $c$ are the side lengths of the triangle?