Found problems: 592
1989 IMO Shortlist, 16
The set $ \{a_0, a_1, \ldots, a_n\}$ of real numbers satisfies the following conditions:
[b](i)[/b] $ a_0 \equal{} a_n \equal{} 0,$
[b](ii)[/b] for $ 1 \leq k \leq n \minus{} 1,$ \[ a_k \equal{} c \plus{} \sum^{n\minus{}1}_{i\equal{}k} a_{i\minus{}k} \cdot \left(a_i \plus{} a_{i\plus{}1} \right)\]
Prove that $ c \leq \frac{1}{4n}.$
1967 IMO Longlists, 55
Find all $x$ for which, for all $n,$ \[\sum^n_{k=1} \sin {k x} \leq \frac{\sqrt{3}}{2}.\]
2022 IFYM, Sozopol, 5
Prove that
$\sum_{n=1}^{2022^{2022}} \frac{1}{\sqrt{n^3+2n^2+n}}<\frac{19}{10}$.
2015 JBMO TST-Turkey, 4
Prove that
$$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+2(a+b+c)$$
for the all $a,b,c$ positive real numbers satisfying $a^2+b^2+c^2+2abc \le 1$.
2021 Polish MO Finals, 4
Prove that for every pair of positive real numbers $a, b$ and for every positive integer $n$,
$$(a+b)^n-a^n-b^n \ge \frac{2^n-2}{2^{n-2}} \cdot ab(a+b)^{n-2}.$$
2020 China Girls Math Olympiad, 2
Let $n$ be an integer and $n \geq 2$, $x_1, x_2, \cdots , x_n$ are arbitrary real number, find the maximum value of $$2\sum_{1\leq i<j \leq n}\left \lfloor x_ix_j \right \rfloor-\left ( n-1 \right )\sum_{i=1}^{n}\left \lfloor x_i^2 \right \rfloor $$
2023 China Girls Math Olympiad, 3
Let $a,b,c,d \in [0,1] .$ Prove that$$\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+d}+\frac{1}{1+d+a}\leq \frac{4}{1+2\sqrt[4]{abcd}}$$
2025 239 Open Mathematical Olympiad, 4
Positive numbers $a$, $b$ and $c$ are such that $a^2+b^2+c^2+abc=4$. Prove that \[\sqrt{2-a}+\sqrt{2-b}+\sqrt{2-c}\geqslant 2+\sqrt{(2-a)(2-b)(2-c)}.\]
1992 Irish Math Olympiad, 5
If, for $k=1,2,\dots ,n$, $a_k$ and $b_k$ are positive real numbers, prove that $$\sqrt[n]{a_1a_2\cdots a_n}+\sqrt[n]{b_1b_2\cdots b_n}\le \sqrt[n]{(a_1+b_1)(a_2+b_2)\cdots (a_n+b_n)};$$ and that equality holds if, and only if, $$\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots =\frac{a_n}{b_n}.$$
2020 Taiwan APMO Preliminary, P6
Let $a,b,c$ be positive reals. Find the minimum value of
$$\dfrac{13a+13b+2c}{2a+2b}+\dfrac{24a-b+13c}{2b+2c}+\dfrac{(-a+24b+13c)}{2c+2a}$$.
(1)What is the minimum value?
(2)If the minimum value occurs when $(a,b,c)=(a_0,b_0,c_0)$,then find $\frac{b_0}{a_0}+\frac{c_0}{b_0}$.
2014 India PRMO, 14
One morning, each member of Manjul’s family drank an $8$-ounce mixture of coffee and milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Manjul drank $1/7$-th of the total amount of milk and $2/17$-th of the total amount of coffee. How many people are there in Manjul’s family?
2021 Greece Junior Math Olympiad, 1
If positive reals $x,y$ are such that $2(x+y)=1+xy$, find the minimum value of expression $$A=x+\frac{1}{x}+y+\frac{1}{y}$$
2023 JBMO Shortlist, A1
Prove that for all positive real numbers $a,b,c,d$,
$$\frac{2}{(a+b)(c+d)+(b+c)(a+d)} \leq \frac{1}{(a+c)(b+d)+4ac}+\frac{1}{(a+c)(b+d)+4bd}$$
and determine when equality occurs.
2019 Junior Balkan Team Selection Tests - Romania, 3
Real numbers $a,b,c,d$ such that $|a|>1$ , $|b|>1$ , $|c|>1$ , $|d|>1$ and $ab(c+d)+dc(a+b)+a+b+c+d=0$ then prove that $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}+\frac{1}{d-1} >0$
2018 IFYM, Sozopol, 8
Prove that for every positive integer $n \geq 2$ the following inequality holds:
$e^{n-1}n!<n^{n+\frac{1}{2}}$
2023 Taiwan TST Round 2, A
For each positive integer $k$ greater than $1$, find the largest real number $t$ such that the following hold:
Given $n$ distinct points $a^{(1)}=(a^{(1)}_1,\ldots, a^{(1)}_k)$, $\ldots$, $a^{(n)}=(a^{(n)}_1,\ldots, a^{(n)}_k)$ in $\mathbb{R}^k$, we define the score of the tuple $a^{(i)}$ as
\[\prod_{j=1}^{k}\#\{1\leq i'\leq n\textup{ such that }\pi_j(a^{(i')})=\pi_j(a^{(i)})\}\]
where $\#S$ is the number of elements in set $S$, and $\pi_j$ is the projection $\mathbb{R}^k\to \mathbb{R}^{k-1}$ omitting the $j$-th coordinate. Then the $t$-th power mean of the scores of all $a^{(i)}$'s is at most $n$.
Note: The $t$-th power mean of positive real numbers $x_1,\ldots,x_n$ is defined as
\[\left(\frac{x_1^t+\cdots+x_n^t}{n}\right)^{1/t}\]
when $t\neq 0$, and it is $\sqrt[n]{x_1\cdots x_n}$ when $t=0$.
[i]Proposed by Cheng-Ying Chang and usjl[/i]
2024 Junior Macedonian Mathematical Olympiad, 1
Let $a, b$, and $c$ be positive real numbers. Prove that
\[\frac{a^4 + 3}{b} + \frac{b^4 + 3}{c} + \frac{c^4 + 3}{a} \ge 12.\]
When does equality hold?
[i]Proposed by Petar Filipovski[/i]
2013 Baltic Way, 4
Prove that the following inequality holds for all positive real numbers $x,y,z$:
\[\dfrac{x^3}{y^2+z^2}+\dfrac{y^3}{z^2+x^2}+\dfrac{z^3}{x^2+y^2}\ge \dfrac{x+y+z}{2}.\]
1990 IMO Longlists, 88
Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$.
Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.
1969 IMO Shortlist, 64
$(USS 1)$ Prove that for a natural number $n > 2, (n!)! > n[(n - 1)!]^{n!}.$
1979 IMO Shortlist, 13
Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$
Azerbaijan Al-Khwarizmi IJMO TST 2025, 2
For $a,b,c$ positive real numbers satisfying $a^2+b^2+c^2 \geq 3$,show that:
$\sqrt[3]{\frac{a^3+b^3+c^3}{3}}+\frac{a+b+c}{9} \geq \frac{4}{3}$.
1984 IMO Longlists, 20
Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.
1988 IMO, 1
Show that the solution set of the inequality
\[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4}
\]
is a union of disjoint intervals, the sum of whose length is 1988.
2018 German National Olympiad, 4
a) Let $a,b$ and $c$ be side lengths of a triangle with perimeter $4$. Show that
\[a^2+b^2+c^2+abc<8.\]
b) Is there a real number $d<8$ such that for all triangles with perimeter $4$ we have
\[a^2+b^2+c^2+abc<d \quad\]
where $a,b$ and $c$ are the side lengths of the triangle?