This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2012 Polish MO Finals, 6

Show that for any positive real numbers $a, b, c$ true is inequality: $\left(\frac{a - b}{c}\right)^2 + \left(\frac{b - c}{a}\right)^2 + \left(\frac{c - a}{b}\right)^2 \ge 2\sqrt{2}\left(\frac{a - b}{c} + \frac{b - c}{a} + \frac{c - a}{b} \right)$.

2020 JBMO Shortlist, 3

Find all triples of positive real numbers $(a, b, c)$ so that the expression $M = \frac{(a + b)(b + c)(a + b + c)}{abc}$ gets its least value.

1982 IMO Shortlist, 3

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2022 China Team Selection Test, 5

Let $n$ be a positive integer, $x_1,x_2,\ldots,x_{2n}$ be non-negative real numbers with sum $4$. Prove that there exist integer $p$ and $q$, with $0 \le q \le n-1$, such that \[ \sum_{i=1}^q x_{p+2i-1} \le 1 \mbox{ and } \sum_{i=q+1}^{n-1} x_{p+2i} \le 1, \] where the indices are take modulo $2n$. [i]Note:[/i] If $q=0$, then $\sum_{i=1}^q x_{p+2i-1}=0$; if $q=n-1$, then $\sum_{i=q+1}^{n-1} x_{p+2i}=0$.

2010 Brazil Team Selection Test, 3

Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that: \[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\] [i]Proposed by Juhan Aru, Estonia[/i]

1967 IMO Shortlist, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

2014 Contests, A1

$\boxed{\text{A1}}$Let $a,b,c$ be positive reals numbers such that $a+b+c=1$.Prove that $2(a^2+b^2+c^2)\ge \frac{1}{9}+15abc$

1977 Germany Team Selection Test, 1

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2024 Azerbaijan National Mathematical Olympiad, 2

Find all the real number triples $(x, y, z)$ satisfying the following system of inequalities under the condition $0 < x, y, z < \sqrt{2}$: $$y\sqrt{4-x^2y^2}\ge \frac{2}{\sqrt{xz}}$$ $$x\sqrt{4-x^2z^2}\ge \frac{2}{\sqrt{yz}}$$ $$z\sqrt{4-y^2z^2}\ge \frac{2}{\sqrt{xy}}$$.

1988 IMO Longlists, 74

Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that: \[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0 \] and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that: \[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2} \] for all $ k \equal{} 1,2, \ldots$.

1969 IMO Shortlist, 66

$(USS 3)$ $(a)$ Prove that if $0 \le a_0 \le a_1 \le a_2,$ then $(a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right)$ $(b)$ Formulate and prove the analogous result for polynomials of third degree.

2022 Korea Winter Program Practice Test, 2

Let $n\ge 2$ be a positive integer. There are $n$ real coefficient polynomials $P_1(x),P_2(x),\cdots ,P_n(x)$ which is not all the same, and their leading coefficients are positive. Prove that $$\deg(P_1^n+P_2^n+\cdots +P_n^n-nP_1P_2\cdots P_n)\ge (n-2)\max_{1\le i\le n}(\deg P_i)$$ and find when the equality holds.

1969 IMO Longlists, 69

$(YUG 1)$ Suppose that positive real numbers $x_1, x_2, x_3$ satisfy $x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$ Prove that: $(a)$ None of $x_1, x_2, x_3$ equals $1$. $(b)$ Exactly one of these numbers is less than $1.$

1985 IMO Shortlist, 6

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

2023 Hong Kong Team Selection Test, Problem 1

Tags: inequality , easy , algebra
Suppose $a$, $b$ and $c$ are nonzero real numberss satisfying $abc=2$. Prove that among the three numbers $2a-\frac{1}{b}$, $2b-\frac{1}{c}$ and $2c-\frac{1}{a}$, at most two of them are greater than $2$.

1990 IMO Shortlist, 24

Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$. Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.

2016 Junior Balkan Team Selection Tests - Romania, 2

a,b,c>0 and $abc\ge 1$.Prove that: $\dfrac{1}{a^3+2b^3+6}+\dfrac{1}{b^3+2c^3+6}+\dfrac{1}{c^3+2a^3+6} \le \dfrac{1}{3}$

2015 JBMO Shortlist, A1

Let x; y; z be real numbers, satisfying the relations $x \ge 20$ $y \ge 40$ $z \ge 1675$ x + y + z = 2015 Find the greatest value of the product P = $xy z$

2023 JBMO Shortlist, A5

Let $a \geq b \geq 1 \geq c \geq 0$ be real numbers such that $a+b+c=3$. Show that $$3 \left( \frac{a}{b}+\frac{b}{a} \right ) \geq 4c^2+\frac{a^2}{b}+\frac{b^2}{a}$$

2019 Mathematical Talent Reward Programme, SAQ: P 3

Suppose $a$, $b$, $c$ are three positive real numbers with $a + b + c = 3$. Prove that $$\frac{a}{b^2 + c}+\frac{b}{c^2 + a}+\frac{c}{a^2 + b}\geq \frac{3}{2}$$

2017 239 Open Mathematical Olympiad, 7

Find the greatest possible value of $s>0$, such that for any positive real numbers $a,b,c$, $$(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})^2 \geq s(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}).$$

1967 IMO Longlists, 3

Prove the trigonometric inequality $\cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16},$ when $x \in \left(0, \frac{\pi}{2} \right).$

2018 JBMO Shortlist, A1

Let $x,y,z$ be positive real numbers . Prove: $\frac{x}{\sqrt{\sqrt[4]{y}+\sqrt[4]{z}}}+\frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}}+\frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}}\geq \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^7}}{\sqrt{2\sqrt{27}}}$

2009 IMO Shortlist, 2

Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that: \[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\] [i]Proposed by Juhan Aru, Estonia[/i]

2014 Balkan MO Shortlist, A1

$\boxed{\text{A1}}$Let $a,b,c$ be positive reals numbers such that $a+b+c=1$.Prove that $2(a^2+b^2+c^2)\ge \frac{1}{9}+15abc$