Found problems: 592
2022 JBMO Shortlist, A4
Suppose that $a, b,$ and $c$ are positive real numbers such that
$$a + b + c \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$$
Find the largest possible value of the expression
$$\frac{a + b - c}{a^3 + b^3 + abc} + \frac{b + c - a}{b^3 + c^3 + abc} + \frac{c + a - b}{c^3 + a^3 + abc}.$$
2024 Indonesia TST, 3
Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$
2014 239 Open Mathematical Olympiad, 6
Given posetive real numbers $a_1,a_2,\dots,a_n$ such that $a_1^2+2a_2^3+\dots+na_n^{n+1} <1.$ Prove that $2a_1+3a_2^2+\dots+(n+1)a_{n}^n <3.$
2007 USAMO, 1
Let $n$ be a positive integer. Define a sequence by setting $a_{1}= n$ and, for each $k > 1$, letting $a_{k}$ be the unique integer in the range $0\leq a_{k}\leq k-1$ for which $a_{1}+a_{2}+...+a_{k}$ is divisible by $k$. For instance, when $n = 9$ the obtained sequence is $9,1,2,0,3,3,3,...$. Prove that for any $n$ the sequence $a_{1},a_{2},...$ eventually becomes constant.
2018 Baltic Way, 3
Let $a,b,c,d$ be positive real numbers such that $abcd=1$. Prove the inequality
\[\frac{1}{\sqrt{a+2b+3c+10}}+\frac{1}{\sqrt{b+2c+3d+10}}+\frac{1}{\sqrt{c+2d+3a+10}}+\frac{1}{\sqrt{d+2a+3b+10}} \le 1.\]
2018 Macedonia JBMO TST, 3
Let $x$, $y$, and $z$ be positive real numbers such that $x + y + z = 1$. Prove that
$\frac{(x+y)^3}{z} + \frac{(y+z)^3}{x} + \frac{(z+x)^3}{y} + 9xyz \ge 9(xy + yz + zx)$.
When does equality hold?
2014 Contests, A2
Let $x,y$ and $z$ be positive real numbers such that $xy+yz+xz=3xyz$. Prove that \[ x^2y+y^2z+z^2x \ge 2(x+y+z)-3 \] and determine when equality holds.
[i]UK - David Monk[/i]
2018 China National Olympiad, 3
Let $q$ be a positive integer which is not a perfect cube. Prove that there exists a positive constant $C$ such that for all natural numbers $n$, one has
$$\{ nq^{\frac{1}{3}} \} + \{ nq^{\frac{2}{3}} \} \geq Cn^{-\frac{1}{2}}$$
where $\{ x \}$ denotes the fractional part of $x$.
2001 Mongolian Mathematical Olympiad, Problem 2
In an acute-angled triangle $ABC$, $a,b,c$ are sides, $m_a,m_b,m_c$ the corresponding medians, $R$ the circumradius and $r$ the inradius. Prove the inequality
$$\frac{a^2+b^2}{a+b}\cdot\frac{b^2+c^2}{b+c}\cdot\frac{a^2+c^2}{a+c}\ge16R^2r\frac{m_a}a\cdot\frac{m_b}b\cdot\frac{m_c}c.$$
2007 JBMO Shortlist, 2
$\boxed{\text{A2}}$ Prove that for all Positive reals $a,b,c$ $\frac{a^2-bc}{2a^2+bc}+\frac{b^2-ca}{2b^2+ca}+\frac{c^2-ab}{2c^2+ab}\leq 0$
1959 AMC 12/AHSME, 25
The symbol $|a|$ means $+a$ if $a$ is greater than or equal to zero, and $-a$ if $a$ is less than or equal to zero; the symbol $<$ means "less than"; the symbol $>$ means "greater than."
The set of values $x$ satisfying the inequality $|3-x|<4$ consists of all $x$ such that:
$ \textbf{(A)}\ x^2<49 \qquad\textbf{(B)}\ x^2>1 \qquad\textbf{(C)}\ 1<x^2<49\qquad\textbf{(D)}\ -1<x<7\qquad\textbf{(E)}\ -7<x<1 $
2019 Balkan MO Shortlist, A4
Let $a_{ij}, i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ be positive real numbers. Prove that
\[ \sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1} \]
1992 IMO Longlists, 57
For positive numbers $a, b, c$ define $A = \frac{(a + b + c)}{3}$, $G = \sqrt[3]{abc}$, $H = \frac{3}{(a^{-1} + b^{-1} + c^{-1})}.$ Prove that
\[ \left( \frac AG \right)^3 \geq \frac 14 + \frac 34 \cdot \frac AH.\]
1971 IMO Shortlist, 5
Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.
2020 Macedonian Nationаl Olympiad, 2
Let $x_1, ..., x_n$ ($n \ge 2$) be real numbers from the interval $[1, 2]$. Prove that
$|x_1 - x_2| + ... + |x_n - x_1| \le \frac{2}{3}(x_1 + ... + x_n)$,
with equality holding if and only if $n$ is even and the $n$-tuple $(x_1, x_2, ..., x_{n - 1}, x_n)$ is equal to $(1, 2, ..., 1, 2)$ or $(2, 1, ..., 2, 1)$.
2022 Thailand TST, 3
Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\][i]Pakawut Jiradilok and Wijit Yangjit, Thailand[/i]
1977 IMO, 1
Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$
2018 Israel National Olympiad, 3
Determine the minimal and maximal values the expression $\frac{|a+b|+|b+c|+|c+a|}{|a|+|b|+|c|}$ can take, where $a,b,c$ are real numbers.
1996 French Mathematical Olympiad, Problem 4
(a) A function $f$ is defined by $f(x)=x^x$ for all $x>0$. Find the minimum value of $f$.
(b) If $x$ and $y$ are two positive real numbers, show that $x^y+y^x>1$.
2022 SEEMOUS, 3
Let $\alpha \in \mathbb{C}\setminus \{0\}$ and $A \in \mathcal{M}_n(\mathbb{C})$, $A \neq O_n$, be such that
$$A^2 + (A^*)^2 = \alpha A\cdot A^*,$$
where $A^* = (\bar A)^T.$ Prove that $\alpha \in \mathbb{R}$, $|\alpha| \le 2$. and $A\cdot A^* = A^*\cdot A.$
2004 Bulgaria Team Selection Test, 2
Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$
2023 Brazil Team Selection Test, 3
Show that for all positive real numbers $a, b, c$, we have that $$\frac{a+b+c}{3}-\sqrt[3]{abc} \leq \max\{(\sqrt{a}-\sqrt{b})^2, (\sqrt{b}-\sqrt{c})^2, (\sqrt{c}-\sqrt{a})^2\}$$
2008 Balkan MO Shortlist, A1
For all $\alpha_1, \alpha_2,\alpha_3 \in \mathbb{R}^+$, Prove
\begin{align*} \sum \frac{1}{2\nu \alpha_1 +\alpha_2+\alpha_3} > \frac{2\nu}{2\nu +1} \left( \sum \frac{1}{\nu \alpha_1 + \nu \alpha_2 + \alpha_3} \right) \end{align*}
for every positive real number $\nu$
2023 Romania National Olympiad, 1
For natural number $n$ we define
\[
a_n = \{ \sqrt{n} \} - \{ \sqrt{n + 1} \} + \{ \sqrt{n + 2} \} - \{ \sqrt{n + 3} \}.
\]
a) Show that $a_1 > 0,2$.
b) Show that $a_n < 0$ for infinity many values of $n$ and $a_n > 0$ for infinity values of natural numbers of $n$ as well. ( We denote by $\{ x \} $ the fractional part of $x.$)
2021 Azerbaijan IZhO TST, 1
Let $a, b, c$ be real numbers with the property as $ab + bc + ca = 1$. Show that:
$$\frac {(a + b) ^ 2 + 1} {c ^ 2 + 2} + \frac {(b + c) ^ 2 + 1} {a ^ 2 + 2} + \frac {(c + a) ^ 2 + 1} {b ^ 2 + 2} \ge 3 $$.