This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

1971 All Soviet Union Mathematical Olympiad, 155

$N$ unit squares on the infinite sheet of cross-lined paper are painted with black colour. Prove that you can cut out the finite number of square pieces and satisfy two conditions all the black squares are contained in those pieces the area of black squares is not less than $1/5$ and not greater than $4/5$ of every piece area.

1983 Tournament Of Towns, (037) A4

(a) An infinite sheet is divided into squares by two sets of parallel lines. Two players play the following game: the first player chooses a square and colours it red, the second player chooses a non-coloured square and colours it blue, the first player chooses a non-coloured square and colours it red, the second player chooses a non-coloured square and colours it blue, and so on. The goal of the first player is to colour four squares whose vertices form a square with sides parallel to the lines of the two parallel sets. The goal of the second player is to prevent him. Can the first player win? (b) What is the answer to this question if the second player is permitted to colour two squares at once? (DG Azov) PS. (a) for Juniors, (a),(b) for Seniors

1973 All Soviet Union Mathematical Olympiad, 181

$n$ squares of the infinite cross-lined sheet of paper are painted with black colour (others are white). Every move all the squares of the sheet change their colour simultaneously. The square gets the colour, that had the majority of three ones: the square itself, its neighbour from the right side and its neighbour from the upper side. a) Prove that after the finite number of the moves all the black squares will disappear. b) Prove that it will happen not later than on the $n$-th move

1982 All Soviet Union Mathematical Olympiad, 343

Every square on the infinite sheet of cross-lined paper contains some real number. Prove that some square contains a number that does not exceed at least four of eight neighbouring numbers.

1984 Tournament Of Towns, (057) O5

An infinite squared sheet is given, with squares of side length $1$. The “distance” between two squares is defined as the length of the shortest path from one of these squares to the other if moving between them like a chess rook (measured along the trajectory of the centre of the rook). Determine the minimum number of colours with which it is possible to colour the sheet (each square being given a single colour) in such a way that each pair of squares with distance between them equal to $6$ units is given different colours. Give an example of such a colouring and prove that using a smaller number of colours we cannot achieve this goal. (AG Pechkovskiy, IV Itenberg)

1981 Tournament Of Towns, (014) 5

On an infinite “squared” sheet six squares are shaded as in the diagram. On some squares there are pieces. It is possible to transform the positions of the pieces according to the following rule: if the neighbour squares to the right and above a given piece are free, it is possible to remove this piece and put pieces on these free squares. The goal is to have all the shaded squares free of pieces. Is it possible to reach this goal if (a) In the initial position there are $6$ pieces and they are placed on the $6$ shaded squares? (b) In the initial position there is only one piece, located in the bottom left shaded square? [img]https://cdn.artofproblemsolving.com/attachments/2/d/0d5cbc159125e2a84edd6ac6aca5206bf8d83b.png[/img] (M Kontsevich, Moscow)

1983 All Soviet Union Mathematical Olympiad, 362

Can You fill the squares of the infinite cross-lined paper with integers so, that the sum of the numbers in every $4\times 6$ fields rectangle would be a) $10$? b) $1$?

1992 All Soviet Union Mathematical Olympiad, 561

Given an infinite sheet of square ruled paper. Some of the squares contain a piece. A move consists of a piece jumping over a piece on a neighbouring square (which shares a side) onto an empty square and removing the piece jumped over. Initially, there are no pieces except in an $m x n$ rectangle ($m, n > 1$) which has a piece on each square. What is the smallest number of pieces that can be left after a series of moves?

1953 Moscow Mathematical Olympiad, 258

A knight stands on an infinite chess board. Find all places it can reach in exactly $2n$ moves.