This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 108

1964 Swedish Mathematical Competition, 3

Find a polynomial with integer coefficients which has $\sqrt2 + \sqrt3$ and $\sqrt2 + \sqrt[3]{3}$ as roots.

1998 Czech and Slovak Match, 2

A polynomial $P(x)$ of degree $n \ge 5$ with integer coefficients has $n$ distinct integer roots, one of which is $0$. Find all integer roots of the polynomial $P(P(x))$.

2014 Swedish Mathematical Competition, 1

Determine all polynomials $p(x)$ with non-negative integer coefficients such that $p (1) = 7$ and $p (10) = 2014$.

1941 Moscow Mathematical Olympiad, 077

A polynomial $P(x)$ with integer coefficients takes odd values at $x = 0$ and $x = 1$. Prove that $P(x)$ has no integer roots.

1998 Singapore Team Selection Test, 3

Suppose $f(x)$ is a polynomial with integer coefficients satisfying the condition $0 \le f(c) \le 1997$ for each $c \in \{0, 1, ..., 1998\}$. Is is true that $f(0) = f(1) = ... = f(1998)$? (variation of [url=https://artofproblemsolving.com/community/c6h49788p315649]1997 IMO Shortlist p12[/url])

2021 Mediterranean Mathematics Olympiad, 1

Determine the smallest positive integer $M$ with the following property: For every choice of integers $a,b,c$, there exists a polynomial $P(x)$ with integer coefficients so that $P(1)=aM$ and $P(2)=bM$ and $P(4)=cM$. [i]Proposed by Gerhard Woeginger, Austria[/i]

1939 Moscow Mathematical Olympiad, 049

Let the product of two polynomials of a variable $x$ with integer coefficients be a polynomial with even coefficients not all of which are divisible by $4$. Prove that all the coefficients of one of the polynomials are even and that at least one of the coefficients of the other polynomial is odd.

2017 South Africa National Olympiad, 6

Determine all pairs $(P, d)$ of a polynomial $P$ with integer coefficients and an integer $d$ such that the equation $P(x) - P(y) = d$ has infinitely many solutions in integers $x$ and $y$ with $x \neq y$.

1995 Poland - Second Round, 1

For a polynomial $P$ with integer coefficients, $P(5)$ is divisible by $2$ and $P(2)$ is divisible by $5$. Prove that $P(7)$ is divisible by $10$.

1999 Israel Grosman Mathematical Olympiad, 4

Consider a polynomial $f(x) = x^4 +ax^3 +bx^2 +cx+d$ with integer coefficients. Prove that if $f(x)$ has exactly one real root, then it can be factored into nonconstant polynomials with rational coefficients

1992 Nordic, 2

Let $n > 1$ be an integer and let $a_1, a_2,... , a_n$ be $n$ different integers. Show that the polynomial $f(x) = (x -a_1)(x - a_2)\cdot ... \cdot (x -a_n) - 1$ is not divisible by any polynomial with integer coefficients and of degree greater than zero but less than $n$ and such that the highest power of $x$ has coefficient $1$.

2020 USA EGMO Team Selection Test, 6

Find the largest integer $N \in \{1, 2, \ldots , 2019 \}$ such that there exists a polynomial $P(x)$ with integer coefficients satisfying the following property: for each positive integer $k$, $P^k(0)$ is divisible by $2020$ if and only if $k$ is divisible by $N$. Here $P^k$ means $P$ applied $k$ times, so $P^1(0)=P(0), P^2(0)=P(P(0)),$ etc.

2004 BAMO, 5

Find (with proof) all monic polynomials $f(x)$ with integer coefficients that satisfy the following two conditions. 1. $f (0) = 2004$. 2. If $x$ is irrational, then $f (x)$ is also irrational. (Notes: Apolynomial is monic if its highest degree term has coefficient $1$. Thus, $f (x) = x^4-5x^3-4x+7$ is an example of a monic polynomial with integer coefficients. A number $x$ is rational if it can be written as a fraction of two integers. A number $x$ is irrational if it is a real number which cannot be written as a fraction of two integers. For example, $2/5$ and $-9$ are rational, while $\sqrt2$ and $\pi$ are well known to be irrational.)

2010 Swedish Mathematical Competition, 3

Find all natural numbers $n \ge 1$ such that there is a polynomial $p(x)$ with integer coefficients for which $p (1) = p (2) = 0$ and where $p (n)$ is a prime number .

1997 Austrian-Polish Competition, 5

Let $p_1,p_2,p_3,p_4$ be four distinct primes. Prove that there is no polynomial $Q(x) = ax^3 + bx^2 + cx + d$ with integer coefficients such that $|Q(p_1)| =|Q(p_2)| = |Q(p_3)|= |Q(p_4 )| = 3$.

2021 Saudi Arabia Training Tests, 35

Let $P (x)$ be a non constant integer polynomial and positive integer $n$. The sequence $a_0, a_1, ...$ is defined by $a_0 = n$ and $a_k = P (a_{k-1})$ for $k \ge 1$. Given that for each positive integer $b$, the sequence contains a $b$-th power of some positive integer greater than $1$. Prove that deg $P = 1$

2011 Ukraine Team Selection Test, 11

Let $ P (x) $ and $ Q (x) $ be polynomials with real coefficients such that $ P (0)> 0 $ and all coefficients of the polynomial $ S (x) = P (x) \cdot Q (x) $ are integers. Prove that for any positive $ x $ the inequality holds: $$S ({{x} ^ {2}}) - {{S} ^ {2}} (x) \le \frac {1} {4} ({{P} ^ {2}} ({{ x} ^ {3}}) + Q ({{x} ^ {3}})). $$

2022 Austrian MO National Competition, 4

Decide whether for every polynomial $P$ of degree at least $1$, there exist infinitely many primes that divide $P(n)$ for at least one positive integer $n$. [i](Walther Janous)[/i]

1991 Nordic, 4

Let $f(x)$ be a polynomial with integer coefficients. We assume that there exists a positive integer $k$ and $k$ consecutive integers $n, n+1, ... , n+k -1$ so that none of the numbers $f(n), f(n+ 1),... , f(n + k - 1)$ is divisible by $k$. Show that the zeroes of $f(x)$ are not integers.

2022 Federal Competition For Advanced Students, P2, 4

Decide whether for every polynomial $P$ of degree at least $1$, there exist infinitely many primes that divide $P(n)$ for at least one positive integer $n$. [i](Walther Janous)[/i]

2015 India Regional MathematicaI Olympiad, 2

Let $P_1(x) = x^2 + a_1x + b_1$ and $P_2(x) = x^2 + a_2x + b_2$ be two quadratic polynomials with integer coeffcients. Suppose $a_1 \ne a_2$ and there exist integers $m \ne n$ such that $P_1(m) = P_2(n), P_2(m) = P_1(n)$. Prove that $a_1 - a_2$ is even.

1998 Israel National Olympiad, 6

Find all pairs $(m,n)$ of integers with $m > n > 7$ for which there exists a polynomial $p(x)$ with integer coefficients such that $p(7) = 77, p(m) = 0$, and $p(n) = 85$.

1970 Swedish Mathematical Competition, 3

A polynomial with integer coefficients takes the value $5$ at five distinct integers. Show that it does not take the value $9$ at any integer.

2017 Tuymaada Olympiad, 5

Does there exist a quadratic trinomial $f(x)$ such that $f(1/2017)=1/2018$, $f(1/2018)=1/2017$, and two of its coefficients are integers? (A. Khrabrov)

1998 Austrian-Polish Competition, 5

Determine all pairs $(a, b)$ of positive integers for which the equation $x^3 - 17x^2 + ax - b^2 = 0$ has three integer roots (not necessarily different).