This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2005 Czech And Slovak Olympiad III A, 4

An acute-angled triangle $AKL$ is given on a plane. Consider all rectangles $ABCD$ circumscribed to triangle $AKL$ such that point $K$ lies on side $BC$ and point $L$ lieson side $CD$. Find the locus of the intersection $S$ of the diagonals $AC$ and $BD$.

2008 Bulgarian Autumn Math Competition, Problem 11.3

In a convex $2008$-gon some of the diagonals are coloured red and the rest blue, so that every vertex is an endpoint of a red diagonal and no three red diagonals concur at a point. It's known that every blue diagonal is intersected by a red diagonal in an interior point. Find the minimal number of intersections of red diagonals.

2011 Sharygin Geometry Olympiad, 10

The diagonals of trapezoid $ABCD$ meet at point $O$. Point $M$ of lateral side $CD$ and points $P, Q$ of bases $BC$ and $AD$ are such that segments $MP$ and $MQ$ are parallel to the diagonals of the trapezoid. Prove that line $PQ$ passes through point $O$.