Found problems: 283
1950 Miklós Schweitzer, 5
Let $ 1\le a_1<a_2<\cdots<a_m\le N$ be a sequence of integers such that the least common multiple of any two of its elements is not greater than $ N$. Show that $ m\le 2\left[\sqrt{N}\right]$, where $ \left[\sqrt{N}\right]$ denotes the greatest integer $ \le \sqrt{N}$
PEN O Problems, 7
Show that for each $n \ge 2$, there is a set $S$ of $n$ integers such that $(a-b)^2$ divides $ab$ for every distinct $a, b\in S$.
2014 NIMO Problems, 8
For positive integers $a$, $b$, and $c$, define \[ f(a,b,c)=\frac{abc}{\text{gcd}(a,b,c)\cdot\text{lcm}(a,b,c)}. \] We say that a positive integer $n$ is $f@$ if there exist pairwise distinct positive integers $x,y,z\leq60$ that satisfy $f(x,y,z)=n$. How many $f@$ integers are there?
[i]Proposed by Michael Ren[/i]
1988 AIME Problems, 8
The function $f$, defined on the set of ordered pairs of positive integers, satisfies the following properties:
\begin{eqnarray*} f(x,x) &=& x, \\ f(x,y) &=& f(y,x), \quad \text{and} \\ (x + y) f(x,y) &=& yf(x,x + y). \end{eqnarray*}
Calculate $f(14,52)$.
2019 Iran RMM TST, 4
Let $a,b $ be two relatively prime positive integers.Also let $m,n $ be positive integers with $n> m $.\\
Prove that\\
$lcm [am+b,a (m+1)+b,...,an+b]\ge (n+1)\cdot \binom {n}{m}$
[i]Proposed by Navid Safaei[/i]
2013 AMC 8, 10
What is the ratio of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594?
$\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 165 \qquad \textbf{(C)}\ 330 \qquad \textbf{(D)}\ 625 \qquad \textbf{(E)}\ 660$
PEN O Problems, 39
Find the smallest positive integer $n$ for which there exist $n$ different positive integers $a_{1}, a_{2}, \cdots, a_{n}$ satisfying [list] [*] $\text{lcm}(a_1,a_2,\cdots,a_n)=1985$,[*] for each $i, j \in \{1, 2, \cdots, n \}$, $gcd(a_i,a_j)\not=1$, [*] the product $a_{1}a_{2} \cdots a_{n}$ is a perfect square and is divisible by $243$, [/list] and find all such $n$-tuples $(a_{1}, \cdots, a_{n})$.
2009 Polish MO Finals, 2
Let $ S$ be a set of all points of a plane whose coordinates are integers. Find the smallest positive integer $ k$ for which there exists a 60-element subset of set $ S$ with the following condition satisfied for any two elements $ A,B$ of the subset there exists a point $ C$ contained in $ S$ such that the area of triangle $ ABC$ is equal to k .
Kvant 2019, M2566
Determine if there exist five consecutive positive integers such that their LCM is a perfect square.
2018 Iran MO (1st Round), 17
Two positive integers $m$ and $n$ are both less than $500$ and $\text{lcm}(m,n) = (m-n)^2$. What is the maximum possible value of $m+n$?
2012 ELMO Shortlist, 6
Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$.
For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$.
[i]Linus Hamilton.[/i]
2014 Middle European Mathematical Olympiad, 7
A finite set of positive integers $A$ is called [i]meanly[/i] if for each of its nonempy subsets the arithmetic mean of its elements is also a positive integer. In other words, $A$ is meanly if $\frac{1}{k}(a_1 + \dots + a_k)$ is an integer whenever $k \ge 1$ and $a_1, \dots, a_k \in A$ are distinct.
Given a positive integer $n$, determine the least possible sum of the elements of a meanly $n$-element set.
2009 Harvard-MIT Mathematics Tournament, 4
Suppose $a$, $b$ and $c$ are integers such that the greatest common divisor of $x^2+ax+b$ and $x^2+bx+c$ is $x+1$ (in the set of polynomials in $x$ with integer coefficients), and the least common multiple of $x^2+ax+b$ and $x^2+bx+c$ $x^3-4x^2+x+6$. Find $a+b+c$.
2003 District Olympiad, 1
In the interior of a cube we consider $\displaystyle 2003$ points. Prove that one can divide the cube in more than $\displaystyle 2003^3$ cubes such that any point lies in the interior of one of the small cubes and not on the faces.
1998 APMO, 5
Find the largest integer $n$ such that $n$ is divisible by all positive integers less than $\sqrt[3]{n}$.
2005 Federal Competition For Advanced Students, Part 2, 1
Find all triples $(a,b,c)$ of natural numbers, such that $LCM(a,b,c)=a+b+c$
1997 Iran MO (3rd Round), 3
Let $d$ be a real number such that $d^2=r^2+s^2$, where $r$ and $s$ are rational numbers. Prove that we can color all points of the plane with rational coordinates with two different colors such that the points with distance $d$ have different colors.
2012 Indonesia MO, 1
Show that for any positive integers $a$ and $b$, the number \[n=\mathrm{LCM}(a,b)+\mathrm{GCD}(a,b)-a-b\] is an even non-negative integer.
[i]Proposer: Nanang Susyanto[/i]
2003 AMC 8, 19
How many integers between $1000$ and $2000$ have all three of the numbers $15$, $20$, and $25$ as factors?
$\textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2015 Iran Team Selection Test, 2
Assume that $a_1, a_2, a_3$ are three given positive integers consider the following sequence:
$a_{n+1}=\text{lcm}[a_n, a_{n-1}]-\text{lcm}[a_{n-1}, a_{n-2}]$ for $n\ge 3$
Prove that there exist a positive integer $k$ such that $k\le a_3+4$ and $a_k\le 0$.
($[a, b]$ means the least positive integer such that$ a\mid[a,b], b\mid[a, b]$ also because $\text{lcm}[a, b]$ takes only nonzero integers this sequence is defined until we find a zero number in the sequence)
2000 Tournament Of Towns, 3
The least common multiple of positive integers $a, b, c$ and $d$ is equal to $a + b + c + d$. Prove that $abcd$ is divisible by at least one of $3$ and $5$.
( V Senderov)
2004 Italy TST, 2
A positive integer $n$ is said to be a [i]perfect power[/i] if $n=a^b$ for some integers $a,b$ with $b>1$.
$(\text{a})$ Find $2004$ perfect powers in arithmetic progression.
$(\text{b})$ Prove that perfect powers cannot form an infinite arithmetic progression.
2004 239 Open Mathematical Olympiad, 6
Given distinct positive integers $a_1,\,a_2,\,\dots,a_n$. Let $b_i = (a_i - a_1) (a_i-a_2) \dots (a_i-a_{i-1}) (a_i-a_{i+1})\dots(a_i-a_n)$. Prove that the least common multiple $[b_1,b_2,\dots,b_n]$ is divisible by $(n-1)!.$
1989 AMC 8, 22
The letters $\text{A}$, $\text{J}$, $\text{H}$, $\text{S}$, $\text{M}$, $\text{E}$ and the digits $1$, $9$, $8$, $9$ are "cycled" separately as follows and put together in a numbered list:
\[\begin{tabular}[t]{lccc}
& & AJHSME & 1989 \\
& & & \\
1. & & JHSMEA & 9891 \\
2. & & HSMEAJ & 8919 \\
3. & & SMEAJH & 9198 \\
& & ........ &
\end{tabular}\]
What is the number of the line on which $\text{AJHSME 1989}$ will appear for the first time?
$\text{(A)}\ 6 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 18 \qquad \text{(E)}\ 24$
2009 Postal Coaching, 5
For positive integers $n, k$ with $1 \le k \le n$, define $$L(n, k) = Lcm \,(n, n - 1, n -2, ..., n - k + 1)$$
Let $f(n)$ be the largest value of $k$ such that $L(n, 1) < L(n, 2) < ... < L(n, k)$.
Prove that $f(n) < 3\sqrt{n}$ and $f(n) > k$ if $n > k! + k$.