Found problems: 837
2007 Today's Calculation Of Integral, 250
For a positive constant number $ p$, find $ \lim_{n\to\infty} \frac {1}{n^{p \plus{} 1}}\sum_{k \equal{} 0}^{n \minus{} 1} \int_{2k\pi}^{(2k \plus{} 1)\pi} x^p\sin ^ 3 x\cos ^ 2x\ dx.$
2012 Online Math Open Problems, 28
Find the remainder when
\[\sum_{k=1}^{2^{16}}\binom{2k}{k}(3\cdot 2^{14}+1)^k (k-1)^{2^{16}-1}\]is divided by $2^{16}+1$. ([i]Note:[/i] It is well-known that $2^{16}+1=65537$ is prime.)
[i]Victor Wang.[/i]
2022 Miklós Schweitzer, 3
Original in Hungarian; translated with Google translate; polished by myself.
Let $f: [0, \infty) \to [0, \infty)$ be a function that is linear between adjacent integers, and for $n = 0, 1, \dots$ satisfies
$$f(n) = \begin{cases} 0, & \textrm{if }2\mid n,\\4^l + 1, & \textrm{if }2 \nmid n, 4^{l - 1} \leq n < 4^l(l = 1, 2, \dots).\end{cases}$$
Let $f^1(x) = f(x)$, and $f^k(x) = f(f^{k - 1}(x))$ for all integers $k \geq 2$. Determine the values of $\liminf\nolimits_{k\to\infty}f^k(x)$ and $\limsup\nolimits_{k\to\infty}f^k(x)$ for almost all $x \in [0, \infty)$ under Lebesgue measure.
(Not sure whether the last sentence translates correctly; the original:
Határozzuk meg Lebesgue majdnem minden $x\in [0, \infty)$-re a $\liminf\nolimits_{k\to\infty}f^k(x)$ és $\limsup\nolimits_{k\to\infty}f^k(x)$ értékét.)
1971 Spain Mathematical Olympiad, 5
Prove that whatever the complex number $z$ is, it is true that
$$(1 + z^{2^n})(1-z^{2^n})= 1- z^{2^{n+1}}.$$
Writing the equalities that result from giving $n$ the values $0, 1, 2, . . .$ and multiplying them, show that for $|z| < 1$ holds
$$\frac{1}{1-z}= \lim_{k\to \infty}(1 + z)(1 + z^2)(1 + z^{2^2})...(1 + z^{2^k}).$$
2011 District Olympiad, 1
a) Prove that $\{x+y\}-\{y\}$ can only be equal to $\{x\}$ or $\{x\}-1$ for any $x,y\in \mathbb{R}$.
b) Let $\alpha\in \mathbb{R}\backslash \mathbb{Q}$. Denote $a_n=\{n\alpha\}$ for all $n\in \mathbb{N}^*$ and define the sequence $(x_n)_{n\ge 1}$ by
\[x_n=(a_2-a_1)(a_3-a_2)\cdot \ldots \cdot (a_{n+1}-a_n)\]
Prove that the sequence $(x_n)_{n\ge 1}$ is convergent and find it's limit.
2012 Today's Calculation Of Integral, 855
Let $f(x)$ be a function which is differentiable twice and $f''(x)>0$ on $[0,\ 1]$.
For a positive integer $n$, find $\lim_{n\to\infty} n\left\{\int_0^1 f(x)\ dx-\frac{1}{n}\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)\right\}.$
1991 Flanders Math Olympiad, 2
(a) Show that for every $n\in\mathbb{N}$ there is exactly one $x\in\mathbb{R}^+$ so that $x^n+x^{n+1}=1$. Call this $x_n$.
(b) Find $\lim\limits_{n\rightarrow+\infty}x_n$.
2024 District Olympiad, P2
Let $k\geqslant 2$ be an integer. Consider the sequence $(x_n)_{n\geqslant 1}$ defined by $x_1=a>0$ and $x_{n+1}=x_n+\lfloor k/x_n\rfloor$ for $n\geqslant 1.$ Prove that the sequence is convergent and determine its limit.
2005 Today's Calculation Of Integral, 42
Let $0<t<\frac{\pi}{2}$.
Evaluate
\[\lim_{t\rightarrow \frac{\pi}{2}} \int_0^t \tan \theta \sqrt{\cos \theta}\ln (\cos \theta)d\theta\]
2008 Putnam, B2
Let $ F_0\equal{}\ln x.$ For $ n\ge 0$ and $ x>0,$ let $ \displaystyle F_{n\plus{}1}(x)\equal{}\int_0^xF_n(t)\,dt.$ Evaluate $ \displaystyle\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$
2024 Olimphíada, 3
A sequence of positive real numbers $a_1, a_2, \dots$ is called $\textit{phine}$ if it satisfies
$$a_{n+2}=\frac{a_{n+1}+a_{n-1}}{a_n},$$
for all $n\geq2$. Is there a $\textit{phine}$ sequence such that, for every real number $r$, there is some $n$ for which $a_n>r$?
2008 Romania National Olympiad, 1
Let $ a>0$ and $ f: [0,\infty) \to [0,a]$ be a continuous function on $ (0,\infty)$ and having Darboux property on $ [0,\infty)$. Prove that if $ f(0)\equal{}0$ and for all nonnegative $ x$ we have
\[ xf(x) \geq \int^x_0 f(t) dt ,\] then $ f$ admits primitives on $ [0,\infty)$.
2012 Pre-Preparation Course Examination, 6
Suppose that $a_{ij}$ are real numbers in such a way that for each $i$, the series $\sum_{j=1}^{\infty}a_{ij}$ is absolutely convergent. In fact we have a series of absolutely convergent serieses. Also we know that for each bounded sequence $\{b_j\}_j$ we have $\lim_{i\to \infty} \sum_{j=1}^{\infty}a_{ij}b_j=0$. Prove that
$\lim_{i\to \infty}\sum_{j=1}^{\infty}|a_{ij}|=0$.
2012 Today's Calculation Of Integral, 820
Let $P_k$ be a point whose $x$-coordinate is $1+\frac{k}{n}\ (k=1,\ 2,\ \cdots,\ n)$ on the curve $y=\ln x$. For $A(1,\ 0)$, find the limit $\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^{n} \overline{AP_k}^2.$
2018 VJIMC, 4
Determine all possible (finite or infinite) values of
\[\lim_{x \to -\infty} f(x)-\lim_{x \to \infty} f(x),\]
if $f:\mathbb{R} \to \mathbb{R}$ is a strictly decreasing continuous function satisfying
\[f(f(x))^4-f(f(x))+f(x)=1\]
for all $x \in \mathbb{R}$.
2004 Gheorghe Vranceanu, 1
Let be the sequence $ \left( x_n \right)_{n\ge 1} $ defined as
$$ x_n= \frac{4009}{4018020} x_{n-1} -\frac{1}{4018020} x_{n-2} + \left( 1+\frac{1}{n} \right)^n. $$
Prove that $ \left( x_n \right)_{n\ge 1} $ is convergent and determine its limit.
1995 Tuymaada Olympiad, 2
Let $x_1=a, x_2=a^{x_1}, ..., x_n=a^{x_{n-1}}$ where $a>1$. What is the maximum value of $a$ for which lim exists $\lim_{n\to \infty} x_n$ and what is this limit?
2013 District Olympiad, 4
Let$f:\mathbb{R}\to \mathbb{R}$be a monotone function.
a) Prove that$f$ have side limits in each point ${{x}_{0}}\in \mathbb{R}$.
b) We define the function $g:\mathbb{R}\to \mathbb{R}$, $g\left( x \right)=\underset{t\nearrow x}{\mathop{\lim }}\,f\left( t \right)$( $g\left( x \right)$ with limit at at left in $x$). Prove that if the $g$ function is continuous, than the function $f$ is continuous.
1947 Putnam, A1
If $(a_n)$ is a sequence of real numbers such that for $n \geq 1$
$$(2-a_n )a_{n+1} =1,$$
prove that $\lim_{n\to \infty} a_n =1.$
2008 Mongolia Team Selection Test, 1
Find all function $ f: R^\plus{} \rightarrow R^\plus{}$ such that for any $ x,y,z \in R^\plus{}$ such that $ x\plus{}y \ge z$ , $ f(x\plus{}y\minus{}z) \plus{}f(2\sqrt{xz})\plus{}f(2\sqrt{yz}) \equal{} f(x\plus{}y\plus{}z)$
2005 VJIMC, Problem 3
Let $f:[0,1]\times[0,1]\to\mathbb R$ be a continuous function. Find the limit
$$\lim_{n\to\infty}\left(\frac{(2n+1)!}{(n!)^2}\right)^2\int^1_0\int^1_0(xy(1-x)(1-y))^nf(x,y)\text dx\text dy.$$
2011 Today's Calculation Of Integral, 754
Let $S_n$ be the area of the figure enclosed by a curve $y=x^2(1-x)^n\ (0\leq x\leq 1)$ and the $x$-axis.
Find $\lim_{n\to\infty} \sum_{k=1}^n S_k.$
2017 Korea USCM, 3
Sequence $\{a_n\}$ defined by recurrence relation $a_{n+1} = 1+\frac{n^2}{a_n}$. Given $a_1>1$, find the value of $\lim\limits_{n\to\infty} \frac{a_n}{n}$ with proof.
2007 IMS, 5
Find all real $\alpha,\beta$ such that the following limit exists and is finite: \[\lim_{x,y\rightarrow 0^{+}}\frac{x^{2\alpha}y^{2\beta}}{x^{2\alpha}+y^{3\beta}}\]
2022 ISI Entrance Examination, 7
Let $$P(x)=1+2 x+7 x^{2}+13 x^{3}~,\qquad x \in \mathbb{R} .$$
Calculate for all $x \in \mathbb{R},$ $$\lim _{n \rightarrow \infty}\left(P\left(\frac{x}{n}\right)\right)^{n}$$