This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 823

2007 Stanford Mathematics Tournament, 22

Katie begins juggling five balls. After every second elapses, there is a chance she will drop a ball. If she is currently juggling $ k$ balls, this probability is $ \frac{k}{10}$. Find the expected number of seconds until she has dropped all the balls.

2018 Miklós Schweitzer, 3

We call an $n\times n$ matrix [i]well groomed[/i] if it only contains elements $0$ and $1$, and it does not contain the submatrix $\begin{pmatrix} 1& 0\\ 0 & 1 \end{pmatrix}.$ Show that there exists a constant $c>0$ such that every well groomed, $n\times n$ matrix contains a submatrix of size at least $cn\times cn$ such that all of the elements of the submatrix are equal. (A well groomed matrix may contain the submatrix $\begin{pmatrix} 0& 1\\ 1 & 0 \end{pmatrix}.$ )

1993 IMO Shortlist, 4

Solve the following system of equations, in which $a$ is a given number satisfying $|a| > 1$: $\begin{matrix} x_{1}^2 = ax_2 + 1 \\ x_{2}^2 = ax_3 + 1 \\ \ldots \\ x_{999}^2 = ax_{1000} + 1 \\ x_{1000}^2 = ax_1 + 1 \\ \end{matrix}$

1967 IMO Shortlist, 4

In what case does the system of equations $\begin{matrix} x + y + mz = a \\ x + my + z = b \\ mx + y + z = c \end{matrix}$ have a solution? Find conditions under which the unique solution of the above system is an arithmetic progression.

2024 OMpD, 2

Let \( n \) be a positive integer, and let \( A \) and \( B \) be \( n \times n \) matrices with real coefficients such that \[ ABBA - BAAB = A - B. \] (a) Prove that \( \text{Tr}(A) = \text{Tr}(B) \) and that \( \text{Tr}(A^2) = \text{Tr}(B^2) \). (b) If \(BA^2B= A^2B^2\) and \(AB^2A= B^2A^2\), prove that \( \det A = \det B \). Note: \( \text{Tr}(X) \) denotes the trace of \( X \), which is the sum of the elements on its main diagonal, and \( \det X \) denotes the determinant of \( X \).

2000 Iran MO (2nd round), 3

Let $M=\{1,2,3,\ldots, 10000\}.$ Prove that there are $16$ subsets of $M$ such that for every $a \in M,$ there exist $8$ of those subsets that intersection of the sets is exactly $\{a\}.$

2001 SNSB Admission, 1

Show that $ \det \left( I_n+A \right)\ge 1, $ for any $ n\times n $ antisymmetric real matrix $ A. $

2019 Brazil Undergrad MO, 1

Let $ I $ and $ 0 $ be the square identity and null matrices, both of size $ 2019 $. There is a square matrix $A$ with rational entries and size $ 2019 $ such that: a) $ A ^ 3 + 6A ^ 2-2I = 0 $? b) $ A ^ 4 + 6A ^ 3-2I = 0 $?

2007 Putnam, 5

Let $ k$ be a positive integer. Prove that there exist polynomials $ P_0(n),P_1(n),\dots,P_{k\minus{}1}(n)$ (which may depend on $ k$) such that for any integer $ n,$ \[ \left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.\] ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)

2020 Brazil Undergrad MO, Problem 3

Let $\mathbb{F}_{13} = {\overline{0}, \overline{1}, \cdots, \overline{12}}$ be the finite field with $13$ elements (with sum and product modulus $13$). Find how many matrix $A$ of size $5$ x $5$ with entries in $\mathbb{F}_{13}$ exist such that $$A^5 = I$$ where $I$ is the identity matrix of order $5$

2013 SEEMOUS, Problem 2

Let $M,N\in M_2(\mathbb C)$ be two nonzero matrices such that $$M^2=N^2=0_2\text{ and }MN+NM=I_2$$where $0_2$ is the $2\times2$ zero matrix and $I_2$ the $2\times2$ unit matrix. Prove that there is an invertible matrix $A\in M_2(\mathbb C)$ such that $$M=A\begin{pmatrix}0&1\\0&0\end{pmatrix}A^{-1}\text{ and }N=A\begin{pmatrix}0&0\\1&0\end{pmatrix}A^{-1}.$$

2010 IberoAmerican Olympiad For University Students, 5

Let $A,B$ be matrices of dimension $2010\times2010$ which commute and have real entries, such that $A^{2010}=B^{2010}=I$, where $I$ is the identity matrix. Prove that if $\operatorname{tr}(AB)=2010$, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.

2000 Moldova National Olympiad, Problem 7

Prove that for any positive integer $n$ there exists a matrix of the form $$A=\begin{pmatrix}1&a&b&c\\0&1&a&b\\0&0&1&a\\0&0&0&1\end{pmatrix},$$ (a) with nonzero entries, (b) with positive entries, such that the entries of $A^n$ are all perfect squares.

2005 Brazil Undergrad MO, 1

Determine the number of possible values for the determinant of $A$, given that $A$ is a $n\times n$ matrix with real entries such that $A^3 - A^2 - 3A + 2I = 0$, where $I$ is the identity and $0$ is the all-zero matrix.

2022 IMC, 2

For a positive integer $n$ determine all $n\times n$ real matrices $A$ which have only real eigenvalues and such that there exists an integer $k\geq n$ with $A + A^k = A^T$.

2012 SEEMOUS, Problem 3

a) Prove that if $k$ is an even positive integer and $A$ is a real symmetric $n\times n$ matrix such that $\operatorname{tr}(A^k)^{k+1}=\operatorname{tr}(A^{k+1})^k$, then $$A^n=\operatorname{tr}(A)A^{n-1}.$$ b) Does the assertion from a) also hold for odd positive integers $k$?

2008 IMC, 4

We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$. For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?

2011 Putnam, A4

For which positive integers $n$ is there an $n\times n$ matrix with integer entries such that every dot product of a row with itself is even, while every dot product of two different rows is odd?

2022 IMC, 7

Let $A_1, \ldots, A_k$ be $n\times n$ idempotent complex matrices such that $A_iA_j = -A_iA_j$ for all $1 \leq i < j \leq k$. Prove that at least one of the matrices has rank not exceeding $\frac{n}{k}$.

2004 IMC, 4

For $n\geq 1$ let $M$ be an $n\times n$ complex array with distinct eigenvalues $\lambda_1,\lambda_2,\ldots,\lambda_k$, with multiplicities $m_1,m_2,\ldots,m_k$ respectively. Consider the linear operator $L_M$ defined by $L_MX=MX+XM^T$, for any complex $n\times n$ array $X$. Find its eigenvalues and their multiplicities. ($M^T$ denotes the transpose matrix of $M$).

2004 Alexandru Myller, 3

Let $A$ and $B$ be $2\times 2$ matrices with integer entries, such that $AB=BA$ and $\det B=1$. Prove tht if $\det(A^3+B^3)=1$, then $A^2=O$.

1987 IMO Longlists, 20

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i] [i]Proposed by Germany, FR[/i]

2006 IMC, 3

Let $A$ be an $n$x$n$ matrix with integer entries and $b_{1},b_{2},...,b_{k}$ be integers satisfying $detA=b_{1}\cdot b_{2}\cdot ...\cdot b_{k}$. Prove that there exist $n$x$n$-matrices $B_{1},B_{2},...,B_{k}$ with integers entries such that $A=B_{1}\cdot B_{2}\cdot ...\cdot B_{k}$ and $detB_{i}=b_{i}$ for all $i=1,...,k$.

2009 AIME Problems, 14

For $ t \equal{} 1, 2, 3, 4$, define $ \displaystyle S_t \equal{} \sum_{i \equal{} 1}^{350}a_i^t$, where $ a_i \in \{1,2,3,4\}$. If $ S_1 \equal{} 513$ and $ S_4 \equal{} 4745$, find the minimum possible value for $ S_2$.

1976 Spain Mathematical Olympiad, 6

Given a square matrix $M$ of order $n$ over the field of numbers real, find, as a function of $M$, two matrices, one symmetric and one antisymmetric, such that their sum is precisely $ M$.