This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2011 Today's Calculation Of Integral, 688

For a real number $x$, let $f(x)=\int_0^{\frac{\pi}{2}} |\cos t-x\sin 2t|\ dt$. (1) Find the minimum value of $f(x)$. (2) Evaluate $\int_0^1 f(x)\ dx$. [i]2011 Tokyo Institute of Technology entrance exam, Problem 2[/i]

2014 AMC 12/AHSME, 22

The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\] $\textbf{(A) }278\qquad \textbf{(B) }279\qquad \textbf{(C) }280\qquad \textbf{(D) }281\qquad \textbf{(E) }282\qquad$

1995 Turkey MO (2nd round), 3

Let $A$ be a real number and $(a_{n})$ be a sequence of real numbers such that $a_{1}=1$ and \[1<\frac{a_{n+1}}{a_{n}}\leq A \mbox{ for all }n\in\mathbb{N}.\] $(a)$ Show that there is a unique non-decreasing surjective function $f: \mathbb{N}\rightarrow \mathbb{N}$ such that $1<A^{k(n)}/a_{n}\leq A$ for all $n\in \mathbb{N}$. $(b)$ If $k$ takes every value at most $m$ times, show that there is a real number $C>1$ such that $Aa_{n}\geq C^{n}$ for all $n\in \mathbb{N}$.

2000 AMC 12/AHSME, 23

Professor Gamble buys a lottery ticket, which requires that he pick six different integers from $ 1$ through $ 46$, inclusive. He chooses his numbers so that the sum of the base-ten logarithms of his six numbers is an integer. It so happens that the integers on the winning ticket have the same property--- the sum of the base-ten logarithms is an integer. What is the probability that Professor Gamble holds the winning ticket? $ \textbf{(A)}\ 1/5 \qquad \textbf{(B)}\ 1/4 \qquad \textbf{(C)}\ 1/3 \qquad \textbf{(D)}\ 1/2 \qquad \textbf{(E)}\ 1$

2010 Today's Calculation Of Integral, 574

Let $ n$ be a positive integer. Prove that $ x^ne^{1\minus{}x}\leq n!$ for $ x\geq 0$,

1995 Canada National Olympiad, 2

Let $\{a,b,c\}\in \mathbb{R}^{+}$. Prove that $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$.

2011 Pre-Preparation Course Examination, 6

We call a subset $S$ of vertices of graph $G$, $2$-dominating, if and only if for every vertex $v\notin S,v\in G$, $v$ has at least two neighbors in $S$. prove that every $r$-regular $(r\ge3)$ graph has a $2$-dominating set with size at most $\frac{n(1+\ln(r))}{r}$.(15 points) time of this exam was 3 hours

2010 Today's Calculation Of Integral, 578

Find the range of $ k$ for which the following inequality holds for $ 0\leq x\leq 1$. \[ \int_0^x \frac {dt}{\sqrt {(3 \plus{} t^2)^3}}\geq k\int _0^x \frac {dt}{\sqrt {3 \plus{} t^2}}\] If necessary, you may use $ \ln 3 \equal{} 1.10$.

2011 ELMO Shortlist, 5

Prove there exists a constant $c$ (independent of $n$) such that for any graph $G$ with $n>2$ vertices, we can split $G$ into a forest and at most $cf(n)$ disjoint cycles, where a) $f(n)=n\ln{n}$; b) $f(n)=n$. [i]David Yang.[/i]

2005 Brazil Undergrad MO, 4

Let $a_{n+1} = a_n + \frac{1}{{a_n}^{2005}}$ and $a_1=1$. Show that $\sum^{\infty}_{n=1}{\frac{1}{n a_n}}$ converge.

2011 Today's Calculation Of Integral, 727

For positive constant $a$, let $C: y=\frac{a}{2}(e^{\frac{x}{a}}+e^{-\frac{x}{a}})$. Denote by $l(t)$ the length of the part $a\leq y\leq t$ for $C$ and denote by $S(t)$ the area of the part bounded by the line $y=t\ (a<t)$ and $C$. Find $\lim_{t\to\infty} \frac{S(t)}{l(t)\ln t}.$

2010 AMC 12/AHSME, 11

Tags: logarithm
The solution of the equation $ 7^{x\plus{}7}\equal{}8^x$ can be expressed in the form $ x\equal{}\log_b 7^7$. What is $ b$? $ \textbf{(A)}\ \frac{7}{15} \qquad \textbf{(B)}\ \frac{7}{8} \qquad \textbf{(C)}\ \frac{8}{7} \qquad \textbf{(D)}\ \frac{15}{8} \qquad \textbf{(E)}\ \frac{15}{7}$

1994 Vietnam Team Selection Test, 2

Determine all functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfying \[f\left(\sqrt{2} \cdot x\right) + f\left(4 + 3 \cdot \sqrt{2} \cdot x \right) = 2 \cdot f\left(\left(2 + \sqrt{2}\right) \cdot x\right)\] for all $x$.

2005 Today's Calculation Of Integral, 68

Find the minimum value of $\int_1^e \left|\ln x-\frac{a}{x}\right|dx\ (0\leq a\leq e)$

1981 Bundeswettbewerb Mathematik, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2014 ELMO Shortlist, 9

Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \][i]Proposed by Shashwat Kishore[/i]

1967 AMC 12/AHSME, 4

Tags: logarithm
Given $\frac{\log{a}}{p}=\frac{\log{b}}{q}=\frac{\log{c}}{r}=\log{x}$, all logarithms to the same base and $x \not= 1$. If $\frac{b^2}{ac}=x^y$, then $y$ is: $ \text{(A)}\ \frac{q^2}{p+r}\qquad\text{(B)}\ \frac{p+r}{2q}\qquad\text{(C)}\ 2q-p-r\qquad\text{(D)}\ 2q-pr\qquad\text{(E)}\ q^2-pr$

2014 Paenza, 1

Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers which satisfies the following relation: \[a_{n+1}=10^n a_n^2\] (a) Prove that if $a_1$ is small enough, then $\displaystyle\lim_{n\to\infty} a_n =0$. (b) Find all possible values of $a_1\in \mathbb{R}$, $a_1\geq 0$, such that $\displaystyle\lim_{n\to\infty} a_n =0$.

2006 Harvard-MIT Mathematics Tournament, 10

Suppose $f$ and $g$ are differentiable functions such that \[xg(f(x))f^\prime(g(x))g^\prime(x)=f(g(x))g^\prime(f(x))f^\prime(x)\] for all real $x$. Moreover, $f$ is nonnegative and $g$ is positive. Furthermore, \[\int_0^a f(g(x))dx=1-\dfrac{e^{-2a}}{2}\] for all reals $a$. Given that $g(f(0))=1$, compute the value of $g(f(4))$.

2011 Today's Calculation Of Integral, 735

Evaluate the following definite integrals: (a) $\int_0^{\frac{\sqrt{\pi}}{2}} x\tan (x^2)\ dx$ (b) $\int_0^{\frac 13} xe^{3x}\ dx$ (c) $\int_e^{e^e} \frac{1}{x\ln x}\ dx$ (d) $\int_2^3 \frac{x^2+1}{x(x+1)}\ dx$

2010 District Olympiad, 1

Prove the following equalities of sets: \[ \text{i)} \{x\in \mathbb{R}\ |\ \log_2 \lfloor x \rfloor \equal{} \lfloor \log_2 x\rfloor \} \equal{} \bigcup_{m\in \mathbb{N}} \left[2^m,2^m \plus{} 1\right)\] \[ \text{ii)} \{x\in \mathbb{R}\ |\ 2^{\lfloor x\rfloor} \equal{} \left\lfloor 2^x\right\rfloor \} \equal{} \bigcup_{m\in \mathbb{N}} \left[m, \log_2 (2^m \plus{} 1) \right)\]

2014 NIMO Summer Contest, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2010 Today's Calculation Of Integral, 571

Evaluate $ \int_0^{\pi} \frac{x\sin ^ 3 x}{\sin ^ 2 x\plus{}8}dx$.

2010 Canadian Mathematical Olympiad Qualification Repechage, 1

Tags: logarithm
Suppose that $a$, $b$ and $x$ are positive real numbers. Prove that $\log_{ab} x =\dfrac{\log_a x\log_b x}{\log_ax+\log_bx}$.

2006 Vietnam National Olympiad, 1

Solve the following system of equations in real numbers: \[ \begin{cases} \sqrt{x^2-2x+6}\cdot \log_{3}(6-y) =x \\ \sqrt{y^2-2y+6}\cdot \log_{3}(6-z)=y \\ \sqrt{z^2-2z+6}\cdot\log_{3}(6-x)=z \end{cases}. \]