This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 913

2014 AMC 12/AHSME, 21

For every real number $x$, let $\lfloor x\rfloor$ denote the greatest integer not exceeding $x$, and let \[f(x)=\lfloor x\rfloor(2014^{x-\lfloor x\rfloor}-1).\] The set of all numbers $x$ such that $1\leq x<2014$ and $f(x)\leq 1$ is a union of disjoint intervals. What is the sum of the lengths of those intervals? $\textbf{(A) }1\qquad \textbf{(B) }\dfrac{\log 2015}{\log 2014}\qquad \textbf{(C) }\dfrac{\log 2014}{\log 2013}\qquad \textbf{(D) }\dfrac{2014}{2013}\qquad \textbf{(E) }2014^{\frac1{2014}}\qquad$

2011 Today's Calculation Of Integral, 674

Evaluate $\int_0^1 \frac{x^2+5}{(x+1)^2(x-2)}dx.$ [i]2011 Doshisya University entrance exam/Science and Technology[/i]

1981 AMC 12/AHSME, 13

Tags: logarithm
Suppose that at the end of any year, a unit of money has lost $10\%$ of the value it had at the beginning of that year. Find the smallest integer $n$ such that after $n$ years, the money will have lost at least $90\%$ of its value. (To the nearest thousandth $\log_{10}3=.477$.) $\text{(A)}\ 14 \qquad \text{(B)}\ 16 \qquad \text{(C)}\ 18 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 22$

2013 Today's Calculation Of Integral, 894

Let $a$ be non zero real number. Find the area of the figure enclosed by the line $y=ax$, the curve $y=x\ln (x+1).$

2008 ISI B.Stat Entrance Exam, 6

Evaluate: $\lim_{n\to\infty} \frac{1}{2n} \ln\binom{2n}{n}$

2005 Today's Calculation Of Integral, 23

Evaluate \[\lim_{a\rightarrow \frac{\pi}{2}-0}\ \int_0^a\ (\cos x)\ln (\cos x)\ dx\ \left(0\leqq a <\frac{\pi}{2}\right)\]

2005 Today's Calculation Of Integral, 50

Let $a,b$ be real numbers such that $a<b$. Evaluate \[\lim_{b\rightarrow a} \frac{\displaystyle\int_a^b \ln |1+(x-a)(b-x)|dx}{(b-a)^3}\].

2018 District Olympiad, 1

Tags: logarithm
Find $x\in\mathbb{R}$ for which \[\log_2(x^2 + 4) - \log_2x + x^2 - 4x + 2 = 0.\]

2014 District Olympiad, 2

Tags: algebra , logarithm
Solve in real numbers the equation \[ x+\log_{2}\left( 1+\sqrt{\frac{5^{x}}{3^{x}+4^{x}}}\right) =4+\log_{1/2}\left(1+\sqrt{\frac{25^{x}}{7^{x}+24^{x}}}\right) \]

2023 AMC 12/AHSME, 7

Tags: logarithm
For how many integers $n$ does the expression \[\sqrt{\frac{\log (n^2) - (\log n)^2}{\log n - 3}} \] represent a real number, where log denotes the base $10$ logarithm? $ \textbf{(A) }900 \qquad \textbf{(B) }2\qquad \textbf{(C) }902 \qquad \textbf{(D) } 2 \qquad \textbf{(E) }901$

2009 Today's Calculation Of Integral, 432

Define the function $ f(t)\equal{}\int_0^1 (|e^x\minus{}t|\plus{}|e^{2x}\minus{}t|)dx$. Find the minimum value of $ f(t)$ for $ 1\leq t\leq e$.

1949-56 Chisinau City MO, 51

Determine graphically the number of roots of the equation $\sin x = \lg x$.

2012 Turkmenistan National Math Olympiad, 3

Prove that : $\frac{1}{(\log_{bc} a)^n}+\frac{1}{(\log_{ac} b)^n}+\frac{1}{(\log_{bc} a)^n}\geq 3\cdot2^{n}$ where $a,b,c>1$ and $n$ is natural number.

2004 Putnam, B2

Let $m$ and $n$ be positive integers. Show that $\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m}\cdot\frac{n!}{n^n}$

1950 AMC 12/AHSME, 18

Tags: logarithm
Of the following (1) $ a(x\minus{}y)\equal{}ax\minus{}ay$ (2) $ a^{x\minus{}y}\equal{}a^x\minus{}a^y$ (3) $ \log (x\minus{}y)\equal{}\log x\minus{}\log y$ (4) $ \frac {\log x}{\log y}\equal{} \log{x}\minus{} \log{y}$ (5) $ a(xy)\equal{}ax\times ay$ $\textbf{(A)}\ \text{Only 1 and 4 are true} \qquad\\ \textbf{(B)}\ \text{Only 1 and 5 are true} \qquad\\ \textbf{(C)}\ \text{Only 1 and 3 are true} \qquad\\ \textbf{(D)}\ \text{Only 1 and 2 are true} \qquad\\ \textbf{(E)}\ \text{Only 1 is true}$

2009 Indonesia TST, 2

For every positive integer $ n$, let $ \phi(n)$ denotes the number of positive integers less than $ n$ that is relatively prime to $ n$ and $ \tau(n)$ denote the sum of all positive divisors of $ n$. Let $ n$ be a positive integer such that $ \phi(n)|n\minus{}1$ and that $ n$ is not a prime number. Prove that $ \tau(n)>2009$.

2005 Today's Calculation Of Integral, 43

Evaluate \[\int_0^{\frac{\pi}{2}} \cos ^ {2004}x\cos 2004x\ dx\]

2014 NIMO Problems, 6

Let $\varphi(k)$ denote the numbers of positive integers less than or equal to $k$ and relatively prime to $k$. Prove that for some positive integer $n$, \[ \varphi(2n-1) + \varphi(2n+1) < \frac{1}{1000} \varphi(2n). \][i]Proposed by Evan Chen[/i]

2012 Today's Calculation Of Integral, 803

Answer the following questions: (1) Evaluate $\int_{-1}^1 (1-x^2)e^{-2x}dx.$ (2) Find $\lim_{n\to\infty} \left\{\frac{(2n)!}{n!n^n}\right\}^{\frac{1}{n}}.$

2016 Korea USCM, 1

Find the following limit. \[\lim_{n\to\infty} \frac{1}{n} \log \left(\sum_{k=2}^{2^n} k^{1/n^2} \right)\]

2007 Today's Calculation Of Integral, 210

Evaluate $\int_{1}^{\pi}\left(x^{3}\ln x-\frac{6}{x}\right)\sin x\ dx$.

2011 China Second Round Olympiad, 3

Let $a,b$ be positive reals such that $\frac{1}{a}+\frac{1}{b}\leq2\sqrt2$ and $(a-b)^2=4(ab)^3$. Find $\log_a b$.

2004 India IMO Training Camp, 1

Let $x_1, x_2 , x_3, .... x_n$ be $n$ real numbers such that $0 < x_j < \frac{1}{2}$. Prove that \[ \frac{ \prod\limits_{j=1}^{n} x_j } { \left( \sum\limits_{j=1}^{n} x_j \right)^n} \leq \frac{ \prod\limits_{j=1}^{n} (1-x_j) } { \left( \sum\limits_{j=1}^{n} (1 - x_j) \right)^n} \]

2010 Contests, 523

Prove the following inequality. \[ \ln \frac {\sqrt {2009} \plus{} \sqrt {2010}}{\sqrt {2008} \plus{} \sqrt {2009}} < \int_{\sqrt {2008}}^{\sqrt {2009}} \frac {\sqrt {1 \minus{} e^{ \minus{} x^2}}}{x}\ dx < \sqrt {2009} \minus{} \sqrt {2008}\]

2005 Romania National Olympiad, 3

a) Prove that there are no one-to-one (injective) functions $f: \mathbb{N} \to \mathbb{N}\cup \{0\}$ such that \[ f(mn) = f(m)+f(n) , \ \forall \ m,n \in \mathbb{N}. \] b) Prove that for all positive integers $k$ there exist one-to-one functions $f: \{1,2,\ldots,k\}\to\mathbb{N}\cup \{0\}$ such that $f(mn) = f(m)+f(n)$ for all $m,n\in \{1,2,\ldots,k\}$ with $mn\leq k$. [i]Mihai Baluna[/i]