This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2016 AMC 10, 11

What is the area of the shaded region of the given $8 \times 5$ rectangle? [asy] size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8)); label("$1$",(1/2,5),dir(90)); label("$7$",(9/2,5),dir(90)); label("$1$",(8,1/2),dir(0)); label("$4$",(8,3),dir(0)); label("$1$",(15/2,0),dir(270)); label("$7$",(7/2,0),dir(270)); label("$1$",(0,9/2),dir(180)); label("$4$",(0,2),dir(180)); [/asy] $\textbf{(A)}\ 4\dfrac{3}{5} \qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 5\dfrac{1}{4} \qquad \textbf{(D)}\ 6\dfrac{1}{2} \qquad \textbf{(E)}\ 8$

2017 CMI B.Sc. Entrance Exam, 1

Answer the following questions : [b](a)[/b] Evaluate $~~\lim_{x\to 0^{+}} \Big(x^{x^x}-x^x\Big)$ [b](b)[/b] Let $A=\frac{2\pi}{9}$, i.e. $40$ degrees. Calculate the following $$1+\cos A+\cos 2A+\cos 4A+\cos 5A+\cos 7A+\cos 8A$$ [b](c)[/b] Find the number of solutions to $$e^x=\frac{x}{2017}+1$$

2016 AMC 12/AHSME, 8

What is the area of the shaded region of the given $8 \times 5$ rectangle? [asy] size(6cm); defaultpen(fontsize(9pt)); draw((0,0)--(8,0)--(8,5)--(0,5)--cycle); filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8)); label("$1$",(1/2,5),dir(90)); label("$7$",(9/2,5),dir(90)); label("$1$",(8,1/2),dir(0)); label("$4$",(8,3),dir(0)); label("$1$",(15/2,0),dir(270)); label("$7$",(7/2,0),dir(270)); label("$1$",(0,9/2),dir(180)); label("$4$",(0,2),dir(180)); [/asy] $\textbf{(A)}\ 4\dfrac{3}{5} \qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 5\dfrac{1}{4} \qquad \textbf{(D)}\ 6\dfrac{1}{2} \qquad \textbf{(E)}\ 8$

1990 India Regional Mathematical Olympiad, 7

Tags: mathematics
A census man on duty visited a house in which the lady inmates declined to reveal their individual ages, but said "We do not mind giving you the sum of the ages of any two ladies you may choose". Thereupon, the census man said, "In that case, please give me the sum of the ages of every possible pair of you". They gave the sums as: 30, 33, 41, 58, 66, 69. The census man took these figures and happily went away. How did he calculate the individual ages?