This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 638

1996 India National Olympiad, 6

There is a $2n \times 2n$ array (matrix) consisting of $0's$ and $1's$ and there are exactly $3n$ zeroes. Show that it is possible to remove all the zeroes by deleting some $n$ rows and some $n$ columns.

1971 IMO Shortlist, 13

Let $ A \equal{} (a_{ij})$, where $ i,j \equal{} 1,2,\ldots,n$, be a square matrix with all $ a_{ij}$ non-negative integers. For each $ i,j$ such that $ a_{ij} \equal{} 0$, the sum of the elements in the $ i$th row and the $ j$th column is at least $ n$. Prove that the sum of all the elements in the matrix is at least $ \frac {n^2}{2}$.

2004 District Olympiad, 4

Let $A=(a_{ij})\in \mathcal{M}_p(\mathbb{C})$ such that $a_{12}=a_{23}=\ldots=a_{p-1,p}=1$ and $a_{ij}=0$ for any other entry. a)Prove that $A^{p-1}\neq O_p$ and $A^p=O_p$. b)If $X\in \mathcal{M}_{p}(\mathbb{C})$ and $AX=XA$, prove that there exist $a_1,a_2,\ldots,a_p\in \mathbb{C}$ such that: \[X=\left( \begin{array}{ccccc} a_1 & a_2 & a_3 & \ldots & a_p \\ 0 & a_1 & a_2 & \ldots & a_{p-1} \\ 0 & 0 & a_1 & \ldots & a_{p-2} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & a_1 \end{array} \right)\] c)If there exist $B,C\in \mathcal{M}_p(\mathbb{C})$ such that $(I_p+A)^n=B^n+C^n,\ (\forall)n\in \mathbb{N}^*$, prove that $B=O_p$ or $C=O_p$.

2017 Miklós Schweitzer, 2

Prove that a field $K$ can be ordered if and only if every $A\in M_n(K)$ symmetric matrix can be diagonalized over the algebraic closure of $K$. (In other words, for all $n\in\mathbb{N}$ and all $A\in M_n(K)$, there exists an $S\in GL_n(\overline{K})$ for which $S^{-1}AS$ is diagonal.)

2019 LIMIT Category C, Problem 9

$P\in A_n(\mathbb R)=\{M_{n\times n}|M^2=M\}$. Which of the following are true? $\textbf{(A)}~P^T=P,\forall P\in A_n(\mathbb R)$ $\textbf{(B)}~\exists P\ne0,P\in A_n(\mathbb R)\text{ with }\operatorname{tr}(P)=0$ $\textbf{(C)}~\exists X_{n\times r}\text{ such that }Px=X\text{ for }r=\operatorname{rank}(P)$

2025 VJIMC, 2

Let $A,B$ be two $n\times n$ complex matrices of the same rank, and let $k$ be a positive integer. Prove that $A^{k+1}B^k = A$ if and only if $B^{k+1}A^k = B$.

1990 Greece National Olympiad, 1

Let $A$ be a $2\,x\,2$ matrix with real numbers. Prove that if $A^3=\mathbb{O}$ then $A^2=\mathbb{O}$.

2006 Iran MO (3rd Round), 1

Suppose that $A\in\mathcal M_{n}(\mathbb R)$ with $\text{Rank}(A)=k$. Prove that $A$ is sum of $k$ matrices $X_{1},\dots,X_{k}$ with $\text{Rank}(X_{i})=1$.

2024 AMC 10, 21

Tags: matrix
The numbers, in order, of each row and the numbers, in order, of each column of a $5 \times 5$ array of integers form an arithmetic progression of length $5{.}$ The numbers in positions $(5, 5), \,(2,4),\,(4,3),$ and $(3, 1)$ are $0, 48, 16,$ and $12{,}$ respectively. What number is in position $(1, 2)?$ \[ \begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}\] $\textbf{(A) } 19 \qquad \textbf{(B) } 24 \qquad \textbf{(C) } 29 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 39$

2004 Germany Team Selection Test, 2

Let $x_1,\ldots, x_n$ and $y_1,\ldots, y_n$ be real numbers. Let $A = (a_{ij})_{1\leq i,j\leq n}$ be the matrix with entries \[a_{ij} = \begin{cases}1,&\text{if }x_i + y_j\geq 0;\\0,&\text{if }x_i + y_j < 0.\end{cases}\] Suppose that $B$ is an $n\times n$ matrix with entries $0$, $1$ such that the sum of the elements in each row and each column of $B$ is equal to the corresponding sum for the matrix $A$. Prove that $A=B$.

2008 District Olympiad, 2

Let $A,B\in \mathcal{M}_n(\mathbb{R})$. Prove that $\text{rank}\ A+\text{rank}\ B\le n$ if and only if there exists an invertible matrix $X\in \mathcal{M}_n(\mathbb{R})$ such that $AXB=O_n$.

2012 VJIMC, Problem 2

Determine all $2\times2$ integer matrices $A$ having the following properties: $1.$ the entries of $A$ are (positive) prime numbers, $2.$ there exists a $2\times2$ integer matrix $B$ such that $A=B^2$ and the determinant of $B$ is the square of a prime number.

2008 IMS, 1

Let $ A_1,A_2,\dots,A_n$ be idempotent matrices with real entries. Prove that: \[ \mbox{N}(A_1)\plus{}\mbox{N}(A_2)\plus{}\dots\plus{}\mbox{N}(A_n)\geq \mbox{rank}(I\minus{}A_1A_2\dots A_n)\] $ \mbox{N}(A)$ is $ \mbox{dim}(\mbox{ker(A)})$

2011 IMC, 2

Does there exist a real $3\times 3$ matrix $A$ such that $\text{tr}(A)=0$ and $A^2+A^t=I?$ ($\text{tr}(A)$ denotes the trace of $A,\ A^t$ the transpose of $A,$ and $I$ is the identity matrix.) [i]Proposed by Moubinool Omarjee, Paris[/i]

2009 AMC 12/AHSME, 9

Triangle $ ABC$ has vertices $ A\equal{}(3,0)$, $ B\equal{}(0,3)$, and $ C$, where $ C$ is on the line $ x\plus{}y\equal{}7$. What is the area of $ \triangle ABC$? $ \textbf{(A)}\ 6\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 10\qquad \textbf{(D)}\ 12\qquad \textbf{(E)}\ 14$

2021 IMC, 5

Let $A$ be a real $n \times n$ matrix and suppose that for every positive integer $m$ there exists a real symmetric matrix $B$ such that $$2021B = A^m+B^2.$$ Prove that $|\text{det} A| \leq 1$.

2018 Romania National Olympiad, 1

Let $n \geq 2$ be a positive integer and, for all vectors with integer entries $$X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$ let $\delta(X) \geq 0$ be the greatest common divisor of $x_1,x_2, \dots, x_n.$ Also, consider $A \in \mathcal{M}_n(\mathbb{Z}).$ Prove that the following statements are equivalent: $\textbf{i) }$ $|\det A | = 1$ $\textbf{ii) }$ $\delta(AX)=\delta(X),$ for all vectors $X \in \mathcal{M}_{n,1}(\mathbb{Z}).$ [i]Romeo Raicu[/i]

2007 Stanford Mathematics Tournament, 22

Katie begins juggling five balls. After every second elapses, there is a chance she will drop a ball. If she is currently juggling $ k$ balls, this probability is $ \frac{k}{10}$. Find the expected number of seconds until she has dropped all the balls.

1994 All-Russian Olympiad Regional Round, 9.8

There are $ 16$ pupils in a class. Every month, the teacher divides the pupils into two groups. Find the smallest number of months after which it will be possible that every two pupils were in two different groups during at least one month.

2011 Bogdan Stan, 1

Consider the multiplicative group $ \left\{ \left.A_k:=\left(\begin{matrix} 2^k& 2^k\\2^k& 2^k\end{matrix}\right)\right| k\in\mathbb{Z} \right\} . $ [b]a)[/b] Prove that $A_xA_y=A_{x+y+1} , $ for all integers $ x,y. $ [b]b)[/b] Show that, for all integers $ t, $ the multiplicative group $ \left\{ A_{jt-1}|j\in\mathbb{Z} \right\} $ is a subgroup of $ G. $ [b]c)[/b] Determine the linear integer polynomials $ P $ for which it exists an isomorphism $ \left( G,\cdot \right)\stackrel{\eta}{\cong}\left( \mathbb{Z} ,+ \right) $ such that $ \eta\left( A_k \right) =P(k). $

2011 VJIMC, Problem 1

Let $n>k$ and let $A_1,\ldots,A_k$ be real $n\times n$ matrices of rank $n-1$. Prove that $$A_1\cdots A_k\ne0.$$

2003 IMC, 3

Let $A\in\mathbb{R}^{n\times n}$ such that $3A^3=A^2+A+I$. Show that the sequence $A^k$ converges to an idempotent matrix. (idempotent: $B^2=B$)

2019 LIMIT Category C, Problem 1

Which of the following are true? $\textbf{(A)}~\forall A\in M_n(\mathbb R),A^t=X^{-1}AX\text{ for some }X\in M_n(\mathbb R)$ $\textbf{(B)}~\forall A\in M_n(\mathbb R),I+AA^t\text{ is invertible}$ $\textbf{(C)}~\operatorname{tr}(AB)=\operatorname{tr}(BA),\forall A,B\in M_n(\mathbb R)\text{ but }\exists A,B,C\text{ such that }\operatorname{tr}(ABC)\ne\operatorname{tr}(BAC)$ $\textbf{(D)}~\text{None of the above}$

2008 SEEMOUS, Problem 3

Let $\mathcal M_n(\mathbb R)$ denote the set of all real $n\times n$ matrices. Find all surjective functions $f:\mathcal M_n(\mathbb R)\to\{0,1,\ldots,n\}$ which satisfy $$f(XY)\le\min\{f(X),f(Y)\}$$for all $X,Y\in\mathcal M_n(\mathbb R)$.

1999 IberoAmerican, 3

Let $P_1,P_2,\dots,P_n$ be $n$ distinct points over a line in the plane ($n\geq2$). Consider all the circumferences with diameters $P_iP_j$ ($1\leq{i,j}\leq{n}$) and they are painted with $k$ given colors. Lets call this configuration a ($n,k$)-cloud. For each positive integer $k$, find all the positive integers $n$ such that every possible ($n,k$)-cloud has two mutually exterior tangent circumferences of the same color.