This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2019 Peru EGMO TST, 2

Let $\Gamma$ be the circle of an acute triangle $ABC$ and let $H$ be its orthocenter. The circle $\omega$ with diameter $AH$ cuts $\Gamma$ at point $D$ ($D\ne A$). Let $M$ be the midpoint of the smaller arc $BC$ of $\Gamma$ . Let $N$ be the midpoint of the largest arc $BC$ of the circumcircle of the triangle $BHC$. Prove that there is a circle that passes through the points $D, H, M$ and $N$.