This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 191

1987 Brazil National Olympiad, 4

Given points $A_1 (x_1, y_1, z_1), A_2 (x_2, y_2, z_2), .., A_n (x_n, y_n, z_n)$ let $P (x, y, z)$ be the point which minimizes $\Sigma ( |x - x_i| + |y -y_i| + |z -z_i| )$. Give an example (for each $n > 4$) of points $A_i $ for which the point $P$ lies outside the convex hull of the points $A_i$.

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

2001 Greece JBMO TST, 3

$4$ men stand at the entrance of a dark tunnel. Man $A$ needs $10$ minutes to pass through the tunnel, man $B$ needs $5$ minutes, man $C$ needs $2$ minutes and man $D$ needs $1$ minute. There is only one torch, that may be used from anyone that passes through the tunnel. Additionaly, at most $2$ men can pass through at the same time using the existing torch. Determine the smallest possible time the four men need to reach the exit of the tunnel.

1999 Spain Mathematical Olympiad, 4

A box contains $900$ cards, labeled from $100$ to $999$. Cards are removed one at a time without replacement. What is the smallest number of cards that must be removed to guarantee that the labels of at least three removed cards have equal sums of digits?

2018 Irish Math Olympiad, 1

Mary and Pat play the following number game. Mary picks an initial integer greater than $2017$. She then multiplies this number by $2017$ and adds $2$ to the result. Pat will add $2019$ to this new number and it will again be Mary’s turn. Both players will continue to take alternating turns. Mary will always multiply the current number by $2017$ and add $2$ to the result when it is her turn. Pat will always add $2019$ to the current number when it is his turn. Pat wins if any of the numbers obtained by either player is divisible by $2018$. Mary wants to prevent Pat from winning the game. Determine, with proof, the smallest initial integer Mary could choose in order to achieve this.

2010 Dutch IMO TST, 1

Consider sequences $a_1, a_2, a_3,...$ of positive integers. Determine the smallest possible value of $a_{2010}$ if (i) $a_n < a_{n+1}$ for all $n\ge 1$, (ii) $a_i + a_l > a_j + a_k$ for all quadruples $ (i, j, k, l)$ which satisfy $1 \le i < j \le k < l$.

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to adjacent rooms. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess queen (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 2$)?

2018 Thailand Mathematical Olympiad, 5

Let a, b be positive integers such that $5 \nmid a, b$ and $5^5 \mid a^5+b^5$. What is the minimum possible value of $a + b$?

2017 Hanoi Open Mathematics Competitions, 13

Let $a, b, c$ be the side-lengths of triangle $ABC$ with $a+b+c = 12$. Determine the smallest value of $M =\frac{a}{b + c - a}+\frac{4b}{c + a - b}+\frac{9c}{a + b - c}$.

2013 Hanoi Open Mathematics Competitions, 1

Write $2013$ as a sum of $m$ prime numbers. The smallest value of $m$ is: (A): $2$, (B): $3$, (C): $4$, (D): $1$, (E): None of the above.

1989 All Soviet Union Mathematical Olympiad, 503

Find the smallest positive integer $n$ for which we can find an integer $m$ such that $\left[\frac{10^n}{m}\right] = 1989$.

2018 JBMO Shortlist, A4

Let $k > 1, n > 2018$ be positive integers, and let $n$ be odd. The nonzero rational numbers $x_1,x_2,\ldots,x_n$ are not all equal and satisfy $$x_1+\frac{k}{x_2}=x_2+\frac{k}{x_3}=x_3+\frac{k}{x_4}=\ldots=x_{n-1}+\frac{k}{x_n}=x_n+\frac{k}{x_1}$$ Find: a) the product $x_1 x_2 \ldots x_n$ as a function of $k$ and $n$ b) the least value of $k$, such that there exist $n,x_1,x_2,\ldots,x_n$ satisfying the given conditions.

1984 Tournament Of Towns, (073) 4

Six musicians gathered at a chamber music festival . At each scheduled concert some of these musicians played while the others listened as members of the audience . What is the least number of such concerts which would need to be scheduled in order to enable each musician to listen , as a member of the audience, to all the other musicians? (Canadian origin)

1982 Tournament Of Towns, (021) 2

A square is subdivided into $K^2$ equal smaller squares. We are given a broken line which passes through the centres of all the smaller squares (such a broken line may intersect itself). Find the minimum number of links in this broken line. (A Andjans, Riga)

1995 Korea National Olympiad, Day 3

Let $m,n$ be positive integers with $1 \le n < m$. A box is locked with several padlocks which must all be opened to open the box, and which all have different keys. The keys are distributed among $m$ people. Suppose that among these people, no $n$ can open the box, but any $n+1$ can open it. Find the smallest possible number $l$ of locks and then the total number of keys for which this is possible.

1955 Moscow Mathematical Olympiad, 305

$25$ chess players are going to participate in a chess tournament. All are on distinct skill levels, and of the two players the one who plays better always wins. What is the least number of games needed to select the two best players?

1945 Moscow Mathematical Olympiad, 100

Suppose we have two identical cardboard polygons. We placed one polygon upon the other one and aligned. Then we pierced polygons with a pin at a point. Then we turned one of the polygons around this pin by $25^o 30'$. It turned out that the polygons coincided (aligned again). What is the minimal possible number of sides of the polygons?

1988 All Soviet Union Mathematical Olympiad, 477

What is the minimal value of $\frac{b}{c + d} + \frac{c}{a + b}$ for positive real numbers $b$ and $c$ and non-negative real numbers $a$ and $d$ such that $b + c\ge a + d$?

2005 Sharygin Geometry Olympiad, 13

A triangle $ABC$ and two lines $\ell_1, \ell_2$ are given. Through an arbitrary point $D$ on the side $AB$, a line parallel to $\ell_1$ intersects the $AC$ at point $E$ and a line parallel to $\ell_2$ intersects the $BC$ at point $F$. Construct a point $D$ for which the segment $EF$ has the smallest length.

2013 Bosnia And Herzegovina - Regional Olympiad, 1

If $x$ and $y$ are nonnegative real numbers such that $x+y=1$, determine minimal and maximal value of $$A=x\sqrt{1+y}+y\sqrt{1+x}$$

2006 Dutch Mathematical Olympiad, 3

$1+2+3+4+5+6=6+7+8$. What is the smallest number $k$ greater than $6$ for which: $1 + 2 +...+ k = k + (k+1) +...+ n$, with $n$ an integer greater than $k$ ?

1986 All Soviet Union Mathematical Olympiad, 420

The point $M$ belongs to the side $[AC]$ of the acute-angle triangle $ABC$. Two circles are circumscribed around triangles $ABM$ and $BCM$ . What $M$ position corresponds to the minimal area of those circles intersection?

1990 All Soviet Union Mathematical Olympiad, 520

Let $x_1, x_2, ..., x_n$ be positive reals with sum $1$. Show that $$\frac{x_1^2}{x_1 + x_2}+ \frac{x_2^2}{x_2 + x_3} +... + \frac{x_{n-1}^2}{x_{n-1} + x_n} + \frac{x_n^2}{x_n + x_1} \ge \frac12$$

1990 All Soviet Union Mathematical Olympiad, 522

Two grasshoppers sit at opposite ends of the interval $[0, 1]$. A finite number of points (greater than zero) in the interval are marked. A move is for a grasshopper to select a marked point and jump over it to the equidistant point the other side. This point must lie in the interval for the move to be allowed, but it does not have to be marked. What is the smallest $n$ such that if each grasshopper makes $n$ moves or less, then they end up with no marked points between them?

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to rooms adjacent by side. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess rook (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 1$)?