This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 43

1995 Czech and Slovak Match, 4

For each real number $p > 1$, find the minimum possible value of the sum $x+y$, where the numbers $x$ and $y$ satisfy the equation $(x+\sqrt{1+x^2})(y+\sqrt{1+y^2}) = p$.

Russian TST 2014, P3

Let $x,y,z$ be real numbers. Find the minimum value of the sum \begin{align*}|\cos(x)|+|\cos(y)|+|\cos(z)|+|\cos(x-y)|+|\cos(y-z)|+|\cos(z-x)|.\end{align*}

2018 IMAR Test, 2

Let $P$ be a non-zero polynomial with non-negative real coefficients, let $N$ be a positive integer, and let $\sigma$ be a permutation of the set $\{1,2,...,n\}$. Determine the least value the sum \[\sum_{i=1}^{n}\frac{P(x_i^2)}{P(x_ix_{\sigma(i)})}\] may achieve, as $x_1,x_2,...,x_n$ run through the set of positive real numbers. [i]Fedor Petrov[/i]

2023 Brazil National Olympiad, 4

Determine the smallest integer $k$ for which there are three distinct positive integers $a$, $b$ and $c$, such that $$a^2 =bc \text{ and } k = 2b+3c-a.$$

1987 Nordic, 3

Let $f$ be a strictly increasing function defined in the set of natural numbers satisfying the conditions $f(2) = a > 2$ and $f(mn) = f(m)f(n)$ for all natural numbers $m$ and $n$. Determine the smallest possible value of $a$.

2017 Pan-African Shortlist, I4

Find the maximum and minimum of the expression \[ \max(a_1, a_2) + \max(a_2, a_3), + \dots + \max(a_{n-1}, a_n) + \max(a_n, a_1), \] where $(a_1, a_2, \dots, a_n)$ runs over the set of permutations of $(1, 2, \dots, n)$.

2009 Philippine MO, 4

Let $k$ be a positive real number such that $$\frac{1}{k+a} + \frac{1}{k+b} + \frac{1}{k+c} \leq 1$$ for any positive positive real numbers $a$, $b$ and $c$ with $abc = 1$. Find the minimum value of $k$.

2021 European Mathematical Cup, 1

Alice drew a regular $2021$-gon in the plane. Bob then labeled each vertex of the $2021$-gon with a real number, in such a way that the labels of consecutive vertices differ by at most $1$. Then, for every pair of non-consecutive vertices whose labels differ by at most $1$, Alice drew a diagonal connecting them. Let $d$ be the number of diagonals Alice drew. Find the least possible value that $d$ can obtain.

2022 Korea Winter Program Practice Test, 4

There are $2022$ students in winter school. Two arbitrary students are friend or enemy each other. Each turn, we choose a student $S$, make friends of $S$ enemies, and make enemies of $S$ friends. This continues until it satisfies the final condition. [b]Final Condition[/b] : For any partition of students into two non-empty groups $A$, $B$, there exist two students $a$, $b$ such that $a\in A$, $b\in B$, and $a$, $b$ are friend each other. Determine the minimum value of $n$ such that regardless of the initial condition, we can satisfy the final condition with no more than $n$ turns.

2018 Brazil Undergrad MO, 5

Consider the set $A = \left\{\frac{j}{4}+\frac{100}{j}|j=1,2,3,..\right\} $ What is the smallest number that belongs to the $ A $ set?

2022 Turkey EGMO TST, 6

Let $x,y,z$ be positive real numbers satisfying the equations $$xyz=1\text{ and }\frac yz(y-x^2)+\frac zx(z-y^2)+\frac xy(x-z^2)=0$$ What is the minimum value of the ratio of the sum of the largest and smallest numbers among $x,y,z$ to the median of them.

1968 IMO Shortlist, 1

Two ships sail on the sea with constant speeds and fixed directions. It is known that at $9:00$ the distance between them was $20$ miles; at $9:35$, $15$ miles; and at $9:55$, $13$ miles. At what moment were the ships the smallest distance from each other, and what was that distance ?

1966 Vietnam National Olympiad, 1

Let $x, y$ and $z$ be nonnegative real numbers satisfying the following conditions: (1) $x + cy \le 36$,(2) $2x+ 3z \le 72$, where $c$ is a given positive number. Prove that if $c \ge 3$ then the maximum of the sum $x + y + z$ is $36$, while if $c < 3$, the maximum of the sum is $24 + \frac{36}{c}$ .

2023 Turkey EGMO TST, 3

Let $x,y,z$ be positive real numbers that satisfy at least one of the inequalities, $2xy>1$, $yz>1$. Find the least possible value of $$xy^3z^2+\frac{4z}{x}-8yz-\frac{4}{yz}$$ .

2019 Tuymaada Olympiad, 3

The plan of a picture gallery is a chequered figure where each square is a room, and every room can be reached from each other by moving to rooms adjacent by side. A custodian in a room can watch all the rooms that can be reached from this room by one move of a chess rook (without leaving the gallery). What minimum number of custodians is sufficient to watch all the rooms in every gallery of $n$ rooms ($n > 1$)?

2012 Balkan MO Shortlist, A4

Let $ABCD$ be a square of the plane $P$. Define the minimum and the maximum the value of the function $f: P \to R$ is given by $f (P) =\frac{PA + PB}{PC + PD}$

2024-IMOC, A2

Given integer $n \geq 3$ and $x_1$, $x_2$, …, $x_n$ be $n$ real numbers satisfying $|x_1|+|x_2|+…+|x_n|=1$. Find the minimum of \[|x_1+x_2|+|x_2+x_3|+…+|x_{n-1}+x_n|+|x_n+x_1|.\] [i]Proposed by snap7822[/i]

2017 Azerbaijan Senior National Olympiad, G4

İn convex hexagon $ABCDEF$'s diagonals $AD,BE,CF$ intercepts each other at point $O$. If the area of triangles $AOB,COD,EOF$ are $4,6$ and $9$ respectively, find the minimum possible value of area of hexagon $ABCDEF$