This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2006 Abels Math Contest (Norwegian MO), 4

Let $\gamma$ be the circumscribed circle about a right-angled triangle $ABC$ with right angle $C$. Let $\delta$ be the circle tangent to the sides $AC$ and $BC$ and tangent to the circle $\gamma$ internally. (a) Find the radius $i$ of $\delta$ in terms of $a$ when $AC$ and $BC$ both have length $a$. (b) Show that the radius $i$ is twice the radius of the inscribed circle of $ABC$.

2014 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$, let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A$, $\omega_B$, $\omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent. [i]Proposed by Robin Park[/i]

2014 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$ with center $O$, let $\omega_A$ be its $A$-mixtilinear incircle, $\omega_B$ be its $B$-mixtilinear incircle, $\omega_C$ be its $C$-mixtilinear incircle, and $X$ be the radical center of $\omega_A$, $\omega_B$, $\omega_C$. Let $A'$, $B'$, $C'$ be the points at which $\omega_A$, $\omega_B$, $\omega_C$ are tangent to $\omega$. Prove that $AA'$, $BB'$, $CC'$ and $OX$ are concurrent. [i]Proposed by Robin Park[/i]