This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2008 AMC 12/AHSME, 15

Let $ k\equal{}2008^2\plus{}2^{2008}$. What is the units digit of $ k^2\plus{}2^k$? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8$

2014 Indonesia MO Shortlist, N6

A positive integer is called [i]beautiful[/i] if it can be represented in the form $\dfrac{x^2+y^2}{x+y}$ for two distinct positive integers $x,y$. A positive integer that is not beautiful is [i]ugly[/i]. a) Prove that $2014$ is a product of a beautiful number and an ugly number. b) Prove that the product of two ugly numbers is also ugly.

2012 Pre - Vietnam Mathematical Olympiad, 1

Let $n \geq 2$ be a positive integer. Suppose there exist non-negative integers ${n_1},{n_2},\ldots,{n_k}$ such that $2^n - 1 \mid \sum_{i = 1}^k {{2^{{n_i}}}}$. Prove that $k \ge n$.

2004 Germany Team Selection Test, 3

Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n \minus{} 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b \equal{} 10$: [i]there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.[/i] [i]Proposed by Laurentiu Panaitopol, Romania[/i]

2013 Olympic Revenge, 5

Consider $n$ lamps clockwise numbered from $1$ to $n$ on a circle. Let $\xi$ to be a configuration where $0 \le \ell \le n$ random lamps are turned on. A [i]cool procedure[/i] consists in perform, simultaneously, the following operations: for each one of the $\ell$ lamps which are turned on, we verify the number of the lamp; if $i$ is turned on, a [i]signal[/i] of range $i$ is sent by this lamp, and it will be received only by the next $i$ lamps which follow $i$, turned on or turned off, also considered clockwise. At the end of the operations we verify, for each lamp, turned on or turned off, how many signals it has received. If it was reached by an even number of signals, it remains on the same state(that is, if it was turned on, it will be turned on; if it was turned off, it will be turned off). Otherwise, it's state will be changed. The example in attachment, for $n=4$, ilustrates a configuration where lamps $2$ and $4$ are initially turned on. Lamp $2$ sends signal only for the lamps $3$ e $4$, while lamp $4$ sends signal for lamps $1$, $2$, $3$ e $4$. Therefore, we verify that lamps $1$ e $2$ received only one signal, while lamps $3$ e $4$ received two signals. Therefore, in the next configuration, lamps $1$ e $4$ will be turned on, while lamps $2$ e $3$ will be turned off. Let $\Psi$ to be the set of all $2^n$ possible configurations, where $0 \le \ell \le n$ random lamps are turned on. We define a function $f: \Psi \rightarrow \Psi$ where, if $\xi$ is a configuration of lamps, then $f(\xi)$ is the configurations obtained after we perform the [i]cool procedure[/i] described above. Determine all values of $n$ for which $f$ is bijective.

2025 Bangladesh Mathematical Olympiad, P4

Let set $S$ be the smallest set of positive integers satisfying the following properties: [list] [*] $2$ is in set $S$. [*] If $n^2$ is in set $S$, then $n$ is also in set $S$. [*] If $n$ is in set $S$, then $(n+5)^2$ is also in set $S$. [/list] Determine which positive integers are not in set $S$.

2013 Iran MO (3rd Round), 1

Let $p$ a prime number and $d$ a divisor of $p-1$. Find the product of elements in $\mathbb Z_p$ with order $d$. ($\mod p$). (10 points)

2012 Baltic Way, 7

On a $2012 \times 2012$ board, some cells on the top-right to bottom-left diagonal are marked. None of the marked cells is in a corner. Integers are written in each cell of this board in the following way. All the numbers in the cells along the upper and the left sides of the board are 1's. All the numbers in the marked cells are 0's. Each of the other cells contains a number that is equal to the sum of its upper neighbour and its left neighbour. Prove that the number in the bottom right corner is not divisible by 2011.

2005 QEDMO 1st, 1 (Z4)

Prove that every integer can be written as sum of $5$ third powers of integers.

2016 Ukraine Team Selection Test, 4

Find all positive integers $a$ such that for any positive integer $n\ge 5$ we have $2^n-n^2\mid a^n-n^a$.

2001 India IMO Training Camp, 2

Let $p > 3$ be a prime. For each $k\in \{1,2, \ldots , p-1\}$, define $x_k$ to be the unique integer in $\{1, \ldots, p-1\}$ such that $kx_k\equiv 1 \pmod{p}$ and set $kx_k = 1+ pn_k$. Prove that : \[\sum_{k=1}^{p-1}kn_k \equiv \frac{p-1}{2} \pmod{p}\]

2000 239 Open Mathematical Olympiad, 5

Let m be a positive integer. Prove that there exist infinitely many prime numbers p such that m+p^3 is composite.

2013 India IMO Training Camp, 2

An integer $a$ is called friendly if the equation $(m^2+n)(n^2+m)=a(m-n)^3$ has a solution over the positive integers. [b]a)[/b] Prove that there are at least $500$ friendly integers in the set $\{ 1,2,\ldots ,2012\}$. [b]b)[/b] Decide whether $a=2$ is friendly.

2014 USA TSTST, 4

Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let $d$ be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ such that: (i) both $A$ and $B$ have degree at most $d/2$ (ii) at most one of $A$ and $B$ is the zero polynomial. (iii) $\frac{A(x)+Q(x)B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x)B(x)=P(x)C(x)$.

2007 ITest, 45

Find the sum of all positive integers $B$ such that $(111)_B=(aabbcc)_6$, where $a,b,c$ represent distinct base $6$ digits, $a\neq 0$.

2011 Turkey MO (2nd round), 4

$a_{1}=5$ and $a_{n+1}=a_{n}^{3}-2a_{n}^{2}+2$ for all $n\geq1$. $p$ is a prime such that $p=3(mod 4)$ and $p|a_{2011}+1$. Show that $p=3$.

2014 Contests, 1

Show that \[\cos(56^{\circ}) \cdot \cos(2 \cdot 56^{\circ}) \cdot \cos(2^2\cdot 56^{\circ})\cdot . . . \cdot \cos(2^{23}\cdot 56^{\circ}) = \frac{1}{2^{24}} .\]

2000 All-Russian Olympiad, 8

One hundred natural numbers whose greatest common divisor is $1$ are arranged around a circle. An allowed operation is to add to a number the greatest common divisor of its two neighhbors. Prove that we can make all the numbers pairwise copirme in a finite number of moves.

2013 Gheorghe Vranceanu, 1

Find all natural numbers $ a,b $ such that $ a^3+b^3 $ a power of $3.$

2004 AIME Problems, 14

Consider a string of $n$ 7's, $7777\cdots77$, into which $+$ signs are inserted to produce an arithmetic expression. For example, $7+77+777+7+7=875$ could be obtained from eight 7's in this way. For how many values of $n$ is it possible to insert $+$ signs so that the resulting expression has value 7000?

2007 Princeton University Math Competition, 10

Find all primes $p$ such that there exist positive integers $q$ and $r$ such that $p \nmid q$, $3 \nmid q$, $p^3 = r^3 - q^2$.

2011 AMC 10, 23

What is the hundreds digit of $2011^{2011}$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9 $

2009 Baltic Way, 9

Determine all positive integers $n$ for which $2^{n+1}-n^2$ is a prime number.

2013 AIME Problems, 2

Find the number of five-digit positive integers, $n$, that satisfy the following conditions: (a) the number $n$ is divisible by $5$, (b) the first and last digits of $n$ are equal, and (c) the sum of the digits of $n$ is divisible by $5$.

1990 USAMO, 3

Suppose that necklace $\, A \,$ has 14 beads and necklace $\, B \,$ has 19. Prove that for any odd integer $n \geq 1$, there is a way to number each of the 33 beads with an integer from the sequence \[ \{ n, n+1, n+2, \dots, n+32 \} \] so that each integer is used once, and adjacent beads correspond to relatively prime integers. (Here a ``necklace'' is viewed as a circle in which each bead is adjacent to two other beads.)