This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2009 Brazil Team Selection Test, 3

Let $ a_1$, $ a_2$, $ \ldots$, $ a_n$ be distinct positive integers, $ n\ge 3$. Prove that there exist distinct indices $ i$ and $ j$ such that $ a_i \plus{} a_j$ does not divide any of the numbers $ 3a_1$, $ 3a_2$, $ \ldots$, $ 3a_n$. [i]Proposed by Mohsen Jamaali, Iran[/i]

PEN O Problems, 29

Let $A$ be a set of $N$ residues $\pmod{N^2}$. Prove that there exists a set $B$ of $N$ residues $\pmod{N^2}$ such that the set $A+B=\{a+b \vert a \in A, b \in B \}$ contains at least half of all the residues $\pmod{N^2}$.

2000 Tuymaada Olympiad, 3

Polynomial $ P(t)$ is such that for all real $ x$, \[ P(\sin x) \plus{} P(\cos x) \equal{} 1. \] What can be the degree of this polynomial?

2007 IMC, 1

Let $ f$ be a polynomial of degree 2 with integer coefficients. Suppose that $ f(k)$ is divisible by 5 for every integer $ k$. Prove that all coefficients of $ f$ are divisible by 5.

2010 Germany Team Selection Test, 3

On a $999\times 999$ board a [i]limp rook[/i] can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A [i]non-intersecting route[/i] of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called [i]cyclic[/i], if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over. How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit? [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2009 National Olympiad First Round, 16

$ x \plus{} 19y \equiv 0 \pmod {23}$ and $ x \plus{} y < 69$. How many pairs of $ (x,y)$ are there in positive integers? $\textbf{(A)}\ 100 \qquad\textbf{(B)}\ 102 \qquad\textbf{(C)}\ 105 \qquad\textbf{(D)}\ 109 \qquad\textbf{(E)}\ \text{None}$

2019 China Team Selection Test, 4

Does there exist a finite set $A$ of positive integers of at least two elements and an infinite set $B$ of positive integers, such that any two distinct elements in $A+B$ are coprime, and for any coprime positive integers $m,n$, there exists an element $x$ in $A+B$ satisfying $x\equiv n \pmod m$ ? Here $A+B=\{a+b|a\in A, b\in B\}$.

2004 APMO, 4

For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that \[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \] is even for every positive integer $n$.

2003 China Team Selection Test, 3

Let $ \left(x_{n}\right)$ be a real sequence satisfying $ x_{0}=0$, $ x_{2}=\sqrt[3]{2}x_{1}$, and $ x_{n+1}=\frac{1}{\sqrt[3]{4}}x_{n}+\sqrt[3]{4}x_{n-1}+\frac{1}{2}x_{n-2}$ for every integer $ n\geq 2$, and such that $ x_{3}$ is a positive integer. Find the minimal number of integers belonging to this sequence.

2013 National Olympiad First Round, 2

How many triples $(p,q,n)$ are there such that $1/p+2013/q = n/5$ where $p$, $q$ are prime numbers and $n$ is a positive integer? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 4 $

2003 Romania National Olympiad, 2

An integer $ n$, $ n\ge2$ is called [i]friendly[/i] if there exists a family $ A_1,A_2,\ldots,A_n$ of subsets of the set $ \{1,2,\ldots,n\}$ such that: (1) $ i\not\in A_i$ for every $ i\equal{}\overline{1,n}$; (2) $ i\in A_j$ if and only if $ j\not\in A_i$, for every distinct $ i,j\in\{1,2,\ldots,n\}$; (3) $ A_i\cap A_j$ is non-empty, for every $ i,j\in\{1,2,\ldots,n\}$. Prove that: (a) 7 is a friendly number; (b) $ n$ is friendly if and only if $ n\ge7$. [i]Valentin Vornicu[/i]

PEN P Problems, 23

Show that there are infinitely many positive integers which cannot be expressed as the sum of squares.

2013 AIME Problems, 7

A group of clerks is assigned the task of sorting $1775$ files. Each clerk sorts at a constant rate of $30$ files per hour. At the end of the first hour, some of the clerks are reassigned to another task; at the end of the second hour, the same number of the remaining clerks are also reassigned to another task, and a similar reassignment occurs at the end of the third hour. The group finishes the sorting in $3$ hours and $10$ minutes. Find the number of files sorted during the first one and a half hours of sorting.

PEN C Problems, 2

The positive integers $a$ and $b$ are such that the numbers $15a+16b$ and $16a-15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?

2002 Czech and Slovak Olympiad III A, 3

Show that a given natural number $A$ is the square of a natural number if and only if for any natural number $n$, at least one of the differences \[(A + 1)^2 - A, (A + 2)^2 - A, (A + 3)^2 - A, \cdots , (A + n)^2 - A\] is divisible by $n$.

2004 Germany Team Selection Test, 3

Let $f(k)$ be the number of integers $n$ satisfying the following conditions: (i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed; (ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$. Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$. [i]Proposed by Dirk Laurie, South Africa[/i]

2023 Bosnia and Herzegovina Junior BMO TST, 2.

Determine all non negative integers $x$ and $y$ such that $6^x$ + $2^y$ + 2 is a perfect square.

2011 Mongolia Team Selection Test, 1

Let $A=\{a^2+13b^2 \mid a,b \in\mathbb{Z}, b\neq0\}$. Prove that there a) exist b) exist infinitely many $x,y$ integer pairs such that $x^{13}+y^{13} \in A$ and $x+y \notin A$. (proposed by B. Bayarjargal)

2005 AMC 12/AHSME, 10

The first term of a sequence is 2005. Each succeeding term is the sum of the cubes of the digits of the previous terms. What is the 2005th term of the sequence? $ \textbf{(A)}\ 29\qquad \textbf{(B)}\ 55\qquad \textbf{(C)}\ 85\qquad \textbf{(D)}\ 133\qquad \textbf{(E)}\ 250$

1988 Polish MO Finals, 2

The sequence $a_1, a_2, a_3, ...$ is defined by $a_1 = a_2 = a_3 = 1$, $a_{n+3} = a_{n+2}a_{n+1} + a_n$. Show that for any positive integer $r$ we can find $s$ such that $a_s$ is a multiple of $r$.

2012 JBMO ShortLists, 2

On a board there are $n$ nails, each two connected by a rope. Each rope is colored in one of $n$ given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors. a) Can $n$ be $6$ ? b) Can $n$ be $7$ ?

2008 IberoAmerican Olympiad For University Students, 6

[i][b]a)[/b][/i] Determine if there are matrices $A,B,C\in\mathrm{SL}_{2}(\mathbb{Z})$ such that $A^2+B^2=C^2$. [b][i]b)[/i][/b] Determine if there are matrices $A,B,C\in\mathrm{SL}_{2}(\mathbb{Z})$ such that $A^4+B^4=C^4$. [b]Note[/b]: The notation $A\in \mathrm{SL}_{2}(\mathbb{Z})$ means that $A$ is a $2\times 2$ matrix with integer entries and $\det A=1$.

PEN H Problems, 50

Show that the equation $y^{2}=x^{3}+2a^{3}-3b^2$ has no solution in integers if $ab \neq 0$, $a \not\equiv 1 \; \pmod{3}$, $3$ does not divide $b$, $a$ is odd if $b$ is even, and $p=t^2 +27u^2$ has a solution in integers $t,u$ if $p \vert a$ and $p \equiv 1 \; \pmod{3}$.

2000 Stanford Mathematics Tournament, 23

What are the last two digits of ${7^{7^{7^7}}}$?

2013 China Team Selection Test, 2

Prove that: there exists a positive constant $K$, and an integer series $\{a_n\}$, satisfying: $(1)$ $0<a_1<a_2<\cdots <a_n<\cdots $; $(2)$ For any positive integer $n$, $a_n<1.01^n K$; $(3)$ For any finite number of distinct terms in $\{a_n\}$, their sum is not a perfect square.