Found problems: 2008
2003 China National Olympiad, 1
Find all integer triples $(a,m,n)$ such that $a^m+1|a^n+203$ where $a,m>1$.
[i]Chen Yonggao[/i]
1982 IMO Longlists, 40
We consider a game on an infinite chessboard similar to that of solitaire: If two adjacent fields are occupied by pawns and the next field is empty (the three fields lie on a vertical or horizontal line), then we may remove these two pawns and put one of them on the third field. Prove that if in the initial position pawns fill a $3k \times n$ rectangle, then it is impossible to reach a position with only one pawn on the board.
2012 IberoAmerican, 3
Let $n$ to be a positive integer. Given a set $\{ a_1, a_2, \ldots, a_n \} $ of integers, where $a_i \in \{ 0, 1, 2, 3, \ldots, 2^n -1 \},$ $\forall i$, we associate to each of its subsets the sum of its elements; particularly, the empty subset has sum of its elements equal to $0$. If all of these sums have different remainders when divided by $2^n$, we say that $\{ a_1, a_2, \ldots, a_n \} $ is [i]$n$-complete[/i].
For each $n$, find the number of [i]$n$-complete[/i] sets.
2014 National Olympiad First Round, 20
How many distinct sets are there such that each set contains only non-negative powers of $2$ or $3$ and sum of its elements is $2014$?
$
\textbf{(A)}\ 64
\qquad\textbf{(B)}\ 60
\qquad\textbf{(C)}\ 54
\qquad\textbf{(D)}\ 48
\qquad\textbf{(E)}\ \text{None of the preceding}
$
1993 All-Russian Olympiad Regional Round, 9.8
Number $ 0$ is written on the board. Two players alternate writing signs and numbers to the right, where the first player always writes either $ \plus{}$ or $ \minus{}$ sign, while the second player writes one of the numbers $ 1, 2, ... , 1993$,writing each of these numbers exactly once. The game ends after $ 1993$ moves. Then the second player wins the score equal to the absolute value of the expression obtained thereby on the board. What largest score can he always win?
1956 AMC 12/AHSME, 34
If $ n$ is any whole number, $ n^2(n^2 \minus{} 1)$ is always divisible by
$ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\ \text{any multiple of }12 \qquad\textbf{(D)}\ 12 \minus{} n \qquad\textbf{(E)}\ 12\text{ and }24$
1996 Bundeswettbewerb Mathematik, 2
Define the sequence $(x_n)$ by $x_0 = 0$ and for all $n \in \mathbb N,$
\[x_n=\begin{cases} x_{n-1} + (3^r - 1)/2,&\mbox{ if } n = 3^{r-1}(3k + 1);\\ x_{n-1} - (3^r + 1)/2, & \mbox{ if } n = 3^{r-1}(3k + 2).\end{cases}\]
where $k \in \mathbb N_0, r \in \mathbb N$. Prove that every integer occurs in this sequence exactly once.
2005 Manhattan Mathematical Olympiad, 4
The parliament of the country Ar consists of two houses, upper and lower, both have the same number of people. The law says that each member must vote "Yes" or "No". One day, when all members of both houses were present and voted on an important issue, the speaker informed the press that the number of members voted "Yes" was greater by $23$ than the number of members voted "No". Prove that he made a mistake.
2010 AIME Problems, 2
Find the remainder when \[9 \times 99 \times 999 \times \cdots \times \underbrace{99\cdots9}_{\text{999 9's}}\] is divided by $ 1000$.
2014 USA TSTST, 6
Suppose we have distinct positive integers $a, b, c, d$, and an odd prime $p$ not dividing any of them, and an integer $M$ such that if one considers the infinite sequence \begin{align*}
ca &- db \\
ca^2 &- db^2 \\
ca^3 &- db^3 \\
ca^4 &- db^4 \\
&\vdots
\end{align*} and looks at the highest power of $p$ that divides each of them, these powers are not all zero, and are all at most $M$. Prove that there exists some $T$ (which may depend on $a,b,c,d,p,M$) such that whenever $p$ divides an element of this sequence, the maximum power of $p$ that divides that element is exactly $p^T$.
2003 China Second Round Olympiad, 2
Let the three sides of a triangle be $\ell, m, n$, respectively, satisfying $\ell>m>n$ and $\left\{\frac{3^\ell}{10^4}\right\}=\left\{\frac{3^m}{10^4}\right\}=\left\{\frac{3^n}{10^4}\right\}$, where $\{x\}=x-\lfloor{x}\rfloor$ and $\lfloor{x}\rfloor$ denotes the integral part of the number $x$. Find the minimum perimeter of such a triangle.
2014 Baltic Way, 16
Determine whether $712! + 1$ is a prime number.
1997 IMO Shortlist, 12
Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.
2013 Romanian Master of Mathematics, 1
For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
2008 ITest, 100
Let $\alpha$ be a root of $x^6-x-1$, and call two polynomials $p$ and $q$ with integer coefficients $\textit{equivalent}$ if $p(\alpha)\equiv q(\alpha)\pmod3$. It is known that every such polynomial is equivalent to exactly one of $0,1,x,x^2,\ldots,x^{727}$. Find the largest integer $n<728$ for which there exists a polynomial $p$ such that $p^3-p-x^n$ is equivalent to $0$.
2008 Germany Team Selection Test, 3
Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$
[i]Author: Gerhard Wöginger, Netherlands[/i]
2012 Tuymaada Olympiad, 4
Let $p=1601$. Prove that if
\[\dfrac {1} {0^2+1}+\dfrac{1}{1^2+1}+\cdots+\dfrac{1}{(p-1)^2+1}=\dfrac{m} {n},\]
where we only sum over terms with denominators not divisible by $p$ (and the fraction $\dfrac {m} {n}$ is in reduced terms) then $p \mid 2m+n$.
[i]Proposed by A. Golovanov[/i]
2013 USAMTS Problems, 5
For any positive integer $b\ge2$, we write the base-$b$ numbers as follows:
\[(d_kd_{k-1}\dots d_0)_b=d_kb^k+d_{k-1}b^{k-1}+\dots+d_1b^1+d_0b^0,\]where each digit $d_i$ is a member of the set $S=\{0,1,2,\dots,b-1\}$ and either $d_k\not=0$ or $k=0$. There is a unique way to write any nonnegative integer in the above form. If we select the digits from a different set $S$ instead, we may obtain new representations of all positive integers or, in some cases, all integers. For example, if $b=3$ and the digits are selected from $S=\{-1,0,1\}$, we obtain a way to uniquely represent all integers, known as a $\emph{balanced ternary}$ representation. As further examples, the balanced ternary representation of numbers $5$, $-3$, and $25$ are:
\[5=(1\ {-1}\ {-1})_3,\qquad{-3}=({-1}\ 0)_3,\qquad25=(1\ 0\ {-1}\ 1)_3.\]However, not all digit sets can represent all integers. If $b=3$ and $S=\{-2,0,2\}$, then no odd number can be represented. Also, if $b=3$ and $S=\{0,1,2\}$ as in the usual base-$3$ representation, then no negative number can be represented.
Given a set $S$ of four integers, one of which is $0$, call $S$ a $\emph{4-basis}$ if every integer $n$ has at least one representation in the form
\[n=(d_kd_{k-1}\dots d_0)_4=d_k4^k+d_{k-1}4^{k-1}+\dots+d_14^1+d_04^0,\]where $d_k,d_{k-1},\dots,d_0$ are all elements of $S$ and either $d_k\not=0$ or $k=0$.
[list=a]
[*]Show that there are infinitely many integers $a$ such that $\{-1,0,1,4a+2\}$ is not a $4$-basis.
[*]Show that there are infinitely many integers $a$ such that $\{-1,0,1,4a+2\}$ is a $4$-basis.[/list]
2008 ITest, 77
With about six hours left on the van ride home from vacation, Wendy looks for something to do. She starts working on a project for the math team.
There are sixteen students, including Wendy, who are about to be sophomores on the math team. Elected as a math team officer, one of Wendy's jobs is to schedule groups of the sophomores to tutor geometry students after school on Tuesdays. The way things have been done in the past, the same number of sophomores tutor every week, but the same group of students never works together. Wendy notices that there are even numbers of groups she could select whether she chooses $4$ or $5$ students at a time to tutor geometry each week:
\begin{align*}\dbinom{16}4&=1820,\\\dbinom{16}5&=4368.\end{align*}
Playing around a bit more, Wendy realizes that unless she chooses all or none of the students on the math team to tutor each week that the number of possible combinations of the sophomore math teamers is always even. This gives her an idea for a problem for the $2008$ Jupiter Falls High School Math Meet team test:
\[\text{How many of the 2009 numbers on Row 2008 of Pascal's Triangle are even?}\]
Wendy works the solution out correctly. What is her answer?
2005 Czech-Polish-Slovak Match, 6
Determine all pairs of integers $(x, y)$ satisfying the equation
\[y(x + y) = x^3- 7x^2 + 11x - 3.\]
1998 India Regional Mathematical Olympiad, 2
Let $n$ be a positive integer and $p_1, p_2, p_3, \ldots p_n$ be $n$ prime numbers all larger than $5$ such that $6$ divides $p_1 ^2 + p_2 ^2 + p_3 ^2 + \cdots p_n ^2$. prove that $6$ divides $n$.
2006 Stanford Mathematics Tournament, 14
Find the smallest nonnegative integer $n$ for which $\binom{2006}{n}$ is divisible by $7^3$.
2013 India Regional Mathematical Olympiad, 4
A polynomial is called Fermat polynomial if it can be written as the sum of squares of two polynomials with integer coefficients. Suppose that $f(x)$ is a Fermat polynomial such that $f(0)=1000$. Prove that $f(x)+2x$ is not a fermat polynomial
2013 All-Russian Olympiad, 1
$2n$ real numbers with a positive sum are aligned in a circle. For each of the numbers, we can see there are two sets of $n$ numbers such that this number is on the end. Prove that at least one of the numbers has a positive sum for both of these two sets.
2014 NIMO Problems, 6
Let $P(x)$ be a polynomial with real coefficients such that $P(12)=20$ and \[ (x-1) \cdot P(16x)= (8x-1) \cdot P(8x) \] holds for all real numbers $x$. Compute the remainder when $P(2014)$ is divided by $1000$.
[i]Proposed by Alex Gu[/i]