This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2011 Benelux, 3

If $k$ is an integer, let $\mathrm{c}(k)$ denote the largest cube that is less than or equal to $k$. Find all positive integers $p$ for which the following sequence is bounded: $a_0 = p$ and $a_{n+1} = 3a_n-2\mathrm{c}(a_n)$ for $n \geqslant 0$.

1996 IMO Shortlist, 9

Let the sequence $ a(n), n \equal{} 1,2,3, \ldots$ be generated as follows with $ a(1) \equal{} 0,$ and for $ n > 1:$ \[ a(n) \equal{} a\left( \left \lfloor \frac{n}{2} \right \rfloor \right) \plus{} (\minus{}1)^{\frac{n(n\plus{}1)}{2}}.\] 1.) Determine the maximum and minimum value of $ a(n)$ over $ n \leq 1996$ and find all $ n \leq 1996$ for which these extreme values are attained. 2.) How many terms $ a(n), n \leq 1996,$ are equal to 0?

2007 IMO Shortlist, 3

Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$ [i]Author: Gerhard Wöginger, Netherlands[/i]

2009 China Team Selection Test, 3

Let $ f(x)$ be a $ n \minus{}$degree polynomial all of whose coefficients are equal to $ \pm 1$, and having $ x \equal{} 1$ as its $ m$ multiple root. If $ m\ge 2^k (k\ge 2,k\in N)$, then $ n\ge 2^{k \plus{} 1} \minus{} 1.$

2001 USAMO, 5

Let $S$ be a set of integers (not necessarily positive) such that (a) there exist $a,b \in S$ with $\gcd(a,b)=\gcd(a-2,b-2)=1$; (b) if $x$ and $y$ are elements of $S$ (possibly equal), then $x^2-y$ also belongs to $S$. Prove that $S$ is the set of all integers.

2013 India IMO Training Camp, 2

An integer $a$ is called friendly if the equation $(m^2+n)(n^2+m)=a(m-n)^3$ has a solution over the positive integers. [b]a)[/b] Prove that there are at least $500$ friendly integers in the set $\{ 1,2,\ldots ,2012\}$. [b]b)[/b] Decide whether $a=2$ is friendly.

2013 Serbia National Math Olympiad, 2

For a natural number $n$, set $S_n$ is defined as: \[S_n = \left \{ {n\choose n}, {2n \choose n}, {3n\choose n},..., {n^2 \choose n} \right \}.\] a) Prove that there are infinitely many composite numbers $n$, such that the set $S_n$ is not complete residue system mod $n$; b) Prove that there are infinitely many composite numbers $n$, such that the set $S_n$ is complete residue system mod $n$.

2002 IMO Shortlist, 5

Let $m,n\geq2$ be positive integers, and let $a_1,a_2,\ldots ,a_n$ be integers, none of which is a multiple of $m^{n-1}$. Show that there exist integers $e_1,e_2,\ldots,e_n$, not all zero, with $\left|{\,e}_i\,\right|<m$ for all $i$, such that $e_1a_1+e_2a_2+\,\ldots\,+e_na_n$ is a multiple of $m^n$.

PEN A Problems, 114

What is the greatest common divisor of the set of numbers \[\{{16}^{n}+10n-1 \; \vert \; n=1,2,\cdots \}?\]

2001 National Olympiad First Round, 19

If the integers $m,n,k$ hold the equation $221m+247n+323k=2001$, what is the smallest possible value of $k$ greater than $100$? $ \textbf{(A)}\ 124 \qquad\textbf{(B)}\ 111 \qquad\textbf{(C)}\ 107 \qquad\textbf{(D)}\ 101 \qquad\textbf{(E)}\ \text{None of the preceding} $

1993 Cono Sur Olympiad, 2

Prove that there exists a succession $a_1, a_2, ... , a_k, ...$, where each $a_i$ is a digit ($a_i \in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)$ ) and $a_0=6$, such that, for each positive integrer $n$, the number $x_n=a_0+10a_1+100a_2+...+10^{n-1}a_{n-1}$ verify that $x_n^2-x_n$ is divisible by $10^n$.

PEN O Problems, 37

Let $n$, $k$ be positive integers such that $n$ is not divisible by $3$ and $k\ge n$. Prove that there exists a positive integer m which is divisible by $n$ and the sum of its digits in the decimal representation is $k$.

2011 Vietnam Team Selection Test, 1

A grasshopper rests on the point $(1,1)$ on the plane. Denote by $O,$ the origin of coordinates. From that point, it jumps to a certain lattice point under the condition that, if it jumps from a point $A$ to $B,$ then the area of $\triangle AOB$ is equal to $\frac 12.$ $(a)$ Find all the positive integral poijnts $(m,n)$ which can be covered by the grasshopper after a finite number of steps, starting from $(1,1).$ $(b)$ If a point $(m,n)$ satisfies the above condition, then show that there exists a certain path for the grasshopper to reach $(m,n)$ from $(1,1)$ such that the number of jumps does not exceed $|m-n|.$

1985 AIME Problems, 5

A sequence of integers $a_1$, $a_2$, $a_3$, $\ldots$ is chosen so that $a_n = a_{n - 1} - a_{n - 2}$ for each $n \ge 3$. What is the sum of the first 2001 terms of this sequence if the sum of the first 1492 terms is 1985, and the sum of the first 1985 terms is 1492?

2014 National Olympiad First Round, 22

What is remainder when $2014^{2015}$ is divided by $121$? $ \textbf{(A)}\ 45 \qquad\textbf{(B)}\ 34 \qquad\textbf{(C)}\ 23 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 1 $

2012 EGMO, 5

The numbers $p$ and $q$ are prime and satisfy \[\frac{p}{{p + 1}} + \frac{{q + 1}}{q} = \frac{{2n}}{{n + 2}}\] for some positive integer $n$. Find all possible values of $q-p$. [i]Luxembourg (Pierre Haas)[/i]

2009 AIME Problems, 14

For $ t \equal{} 1, 2, 3, 4$, define $ \displaystyle S_t \equal{} \sum_{i \equal{} 1}^{350}a_i^t$, where $ a_i \in \{1,2,3,4\}$. If $ S_1 \equal{} 513$ and $ S_4 \equal{} 4745$, find the minimum possible value for $ S_2$.

1997 USAMO, 1

Let $p_1, p_2, p_3, \ldots$ be the prime numbers listed in increasing order, and let $x_0$ be a real number between 0 and 1. For positive integer $k$, define \[ x_k = \begin{cases} 0 & \mbox{if} \; x_{k-1} = 0, \\[.1in] {\displaystyle \left\{ \frac{p_k}{x_{k-1}} \right\}} & \mbox{if} \; x_{k-1} \neq 0, \end{cases} \] where $\{x\}$ denotes the fractional part of $x$. (The fractional part of $x$ is given by $x - \lfloor x \rfloor$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) Find, with proof, all $x_0$ satisfying $0 < x_0 < 1$ for which the sequence $x_0, x_1, x_2, \ldots$ eventually becomes 0.

2013 Dutch IMO TST, 4

Determine all positive integers $n\ge 2$ satisfying $i+j\equiv\binom ni +\binom nj \pmod{2}$ for all $i$ and $j$ with $0\le i\le j\le n$.

2003 AIME Problems, 8

In an increasing sequence of four positive integers, the first three terms form an arithmetic progression, the last three terms form a geometric progression, and the first and fourth terms differ by 30. Find the sum of the four terms.

2013 Purple Comet Problems, 26

The diagram below shows the first three figures of a sequence of figures. The fi rst figure shows an equilateral triangle $ABC$ with side length $1$. The leading edge of the triangle going in a clockwise direction around $A$ is labeled $\overline{AB}$ and is darkened in on the figure. The second figure shows the same equilateral triangle with a square with side length $1$ attached to the leading clockwise edge of the triangle. The third figure shows the same triangle and square with a regular pentagon with side length $1$ attached to the leading clockwise edge of the square. The fourth fi gure in the sequence will be formed by attaching a regular hexagon with side length $1$ to the leading clockwise edge of the pentagon. The hexagon will overlap the triangle. Continue this sequence through the eighth figure. After attaching the last regular figure (a regular decagon), its leading clockwise edge will form an angle of less than $180^\circ$ with the side $\overline{AC}$ of the equilateral triangle. The degree measure of that angle can be written in the form $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [asy] size(250); defaultpen(linewidth(0.7)+fontsize(10)); pair x[],y[],z[]; x[0]=origin; x[1]=(5,0); x[2]=rotate(60,x[0])*x[1]; draw(x[0]--x[1]--x[2]--cycle); for(int i=0;i<=2;i=i+1) { y[i]=x[i]+(15,0); } y[3]=rotate(90,y[0])*y[2]; y[4]=rotate(-90,y[2])*y[0]; draw(y[0]--y[1]--y[2]--y[0]--y[3]--y[4]--y[2]); for(int i=0;i<=4;i=i+1) { z[i]=y[i]+(15,0); } z[5]=rotate(108,z[4])*z[2]; z[6]=rotate(108,z[5])*z[4]; z[7]=rotate(108,z[6])*z[5]; draw(z[0]--z[1]--z[2]--z[0]--z[3]--z[4]--z[2]--z[7]--z[6]--z[5]--z[4]); dot(x[2]^^y[2]^^z[2],linewidth(3)); draw(x[2]--x[0]^^y[2]--y[4]^^z[2]--z[7],linewidth(1)); label("A",(x[2].x,x[2].y-.3),S); label("B",origin,S); label("C",x[1],S);[/asy]

2007 Baltic Way, 16

Let $a$ and $b$ be rational numbers such that $s=a+b=a^2+b^2$. Prove that $s$ can be written as a fraction where the denominator is relatively prime to $6$.

2013 APMO, 2

Determine all positive integers $n$ for which $\dfrac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.

PEN A Problems, 23

(Wolstenholme's Theorem) Prove that if \[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}\] is expressed as a fraction, where $p \ge 5$ is a prime, then $p^{2}$ divides the numerator.

2006 Germany Team Selection Test, 2

Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property: \[ n!\mid a^n \plus{} 1 \] [i]Proposed by Carlos Caicedo, Colombia[/i]