This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2008

2000 Korea - Final Round, 1

Let $p$ be a prime such that $p \equiv 1 (\text {mod}4)$. Evaluate \[\sum_{k=1}^{p-1} \left( \left \lfloor \frac{2k^2}{p}\right \rfloor - 2 \left \lfloor {\frac{k^2}{p}}\right \rfloor \right)\]

2014 Postal Coaching, 5

Determine all polynomials $f$ with integer coefficients with the property that for any two distinct primes $p$ and $q$, $f(p)$ and $f(q)$ are relatively prime.

PEN A Problems, 100

Find all positive integers $n$ such that $n$ has exactly $6$ positive divisors $1<d_{1}<d_{2}<d_{3}<d_{4}<n$ and $1+n=5(d_{1}+d_{2}+d_{3}+d_{4})$.

2012 Stanford Mathematics Tournament, 2

Find the sum of all integers $x$, $x \ge 3$, such that $201020112012_x$ (that is, $201020112012$ interpreted as a base $x$ number) is divisible by $x-1$

2013 Stars Of Mathematics, 1

Prove that for any integers $a,b$, the equation $2abx^4 - a^2x^2 - b^2 - 1 = 0$ has no integer roots. [i](Dan Schwarz)[/i]

2012 AMC 8, 12

What is the units digit of $13^{2012}$ ? $\textbf{(A)}\hspace{.05in}1 \qquad \textbf{(B)}\hspace{.05in}3 \qquad \textbf{(C)}\hspace{.05in}5 \qquad \textbf{(D)}\hspace{.05in}7 \qquad \textbf{(E)}\hspace{.05in}9 $

1972 IMO Shortlist, 6

Show that for any $n \not \equiv 0 \pmod{10}$ there exists a multiple of $n$ not containing the digit $0$ in its decimal expansion.

PEN O Problems, 44

A set $C$ of positive integers is called good if for every integer $k$ there exist distinct $a, b \in C$ such that the numbers $a+k$ and $b+k$ are not relatively prime. Prove that if the sum of the elements of a good set $C$ equals $2003$, then there exists $c \in C$ such that the set $C-\{c\}$ is good.

2011 All-Russian Olympiad, 3

Let $P(a)$ be the largest prime positive divisor of $a^2 + 1$. Prove that exist infinitely many positive integers $a, b, c$ such that $P(a)=P(b)=P(c)$. [i]A. Golovanov[/i]

2023 Dutch BxMO TST, 5

Find all pairs of prime numbers $(p,q)$ for which \[2^p = 2^{q-2} + q!.\]

2008 IMO Shortlist, 4

Let $ n$ be a positive integer. Show that the numbers \[ \binom{2^n \minus{} 1}{0},\; \binom{2^n \minus{} 1}{1},\; \binom{2^n \minus{} 1}{2},\; \ldots,\; \binom{2^n \minus{} 1}{2^{n \minus{} 1} \minus{} 1}\] are congruent modulo $ 2^n$ to $ 1$, $ 3$, $ 5$, $ \ldots$, $ 2^n \minus{} 1$ in some order. [i]Proposed by Duskan Dukic, Serbia[/i]

2005 USAMO, 6

For $m$ a positive integer, let $s(m)$ be the sum of the digits of $m$. For $n\ge 2$, let $f(n)$ be the minimal $k$ for which there exists a set $S$ of $n$ positive integers such that $s\left(\sum_{x\in X} x\right)=k$ for any nonempty subset $X\subset S$. Prove that there are constants $0<C_1<C_2$ with \[C_1 \log_{10} n \le f(n) \le C_2 \log_{10} n.\]

2013 IFYM, Sozopol, 2

Do there exist natural numbers $a, b$ and $c$ such that $a^2+b^2+c^2$ is divisible by $2013(ab+bc+ca)$? [i]Proposed by Mahan Malihi[/i]

2011 AIME Problems, 7

Find the number of positive integers $m$ for which there exist nonnegative integers $x_0,x_1,\ldots,x_{2011}$ such that \[ m^{x_0}=\sum_{k=1}^{2011}m^{x_k}. \]

1973 Bundeswettbewerb Mathematik, 3

For covering the floor of a rectangular room rectangular tiles of sizes $2 \times 2$ and $4 \times 1$ were used. Show that it's not possible to cover the floor if there is one plate less of one type and one more of the other type.

2022 IMC, 6

Let $p \geq 3$ be a prime number. Prove that there is a permutation $(x_1,\ldots, x_{p-1})$ of $(1,2,\ldots,p-1)$ such that $x_1x_2 + x_2x_3 + \cdots + x_{p-2}x_{p-1} \equiv 2 \pmod p$.

2010 Contests, 2

Find the remainder when \[9 \times 99 \times 999 \times \cdots \times \underbrace{99\cdots9}_{\text{999 9's}}\] is divided by $ 1000$.

1973 AMC 12/AHSME, 18

If $ p \geq 5$ is a prime number, then $ 24$ divides $ p^2 \minus{} 1$ without remainder $ \textbf{(A)}\ \text{never} \qquad \textbf{(B)}\ \text{sometimes only} \qquad \textbf{(C)}\ \text{always} \qquad$ $ \textbf{(D)}\ \text{only if } p \equal{}5 \qquad \textbf{(E)}\ \text{none of these}$

2009 AMC 12/AHSME, 25

The set $ G$ is defined by the points $ (x,y)$ with integer coordinates, $ 3\le|x|\le7$, $ 3\le|y|\le7$. How many squares of side at least $ 6$ have their four vertices in $ G$? [asy]defaultpen(black+0.75bp+fontsize(8pt)); size(5cm); path p = scale(.15)*unitcircle; draw((-8,0)--(8.5,0),Arrow(HookHead,1mm)); draw((0,-8)--(0,8.5),Arrow(HookHead,1mm)); int i,j; for (i=-7;i<8;++i) { for (j=-7;j<8;++j) { if (((-7 <= i) && (i <= -3)) || ((3 <= i) && (i<= 7))) { if (((-7 <= j) && (j <= -3)) || ((3 <= j) && (j<= 7))) { fill(shift(i,j)*p,black); }}}} draw((-7,-.2)--(-7,.2),black+0.5bp); draw((-3,-.2)--(-3,.2),black+0.5bp); draw((3,-.2)--(3,.2),black+0.5bp); draw((7,-.2)--(7,.2),black+0.5bp); draw((-.2,-7)--(.2,-7),black+0.5bp); draw((-.2,-3)--(.2,-3),black+0.5bp); draw((-.2,3)--(.2,3),black+0.5bp); draw((-.2,7)--(.2,7),black+0.5bp); label("$-7$",(-7,0),S); label("$-3$",(-3,0),S); label("$3$",(3,0),S); label("$7$",(7,0),S); label("$-7$",(0,-7),W); label("$-3$",(0,-3),W); label("$3$",(0,3),W); label("$7$",(0,7),W);[/asy]$ \textbf{(A)}\ 125\qquad \textbf{(B)}\ 150\qquad \textbf{(C)}\ 175\qquad \textbf{(D)}\ 200\qquad \textbf{(E)}\ 225$

2013 Polish MO Finals, 2

There are given integers $a$ and $b$ such that $a$ is different from $0$ and the number $3+ a +b^2$ is divisible by $6a$. Prove that $a$ is negative.

2002 Flanders Junior Olympiad, 2

Prove that there are no perfect squares in the array below: \[\begin{array}{cccc}11&111&1111&...\\22&222&2222&...\\33&333&3333&...\\44&444&4444&...\\55&555&5555&... \\66&666&6666&...\\77&777&7777&...\\88&888&8888&...\\99&999&9999&...\end{array}\]

2007 National Olympiad First Round, 2

What is the last three digits of base-4 representation of $10\cdot 3^{195}\cdot 49^{49}$? $ \textbf{(A)}\ 112 \qquad\textbf{(B)}\ 130 \qquad\textbf{(C)}\ 132 \qquad\textbf{(D)}\ 212 \qquad\textbf{(E)}\ 232 $

2013 Online Math Open Problems, 25

Positive integers $x,y,z \le 100$ satisfy \begin{align*} 1099x+901y+1110z &= 59800 \\ 109x+991y+101z &= 44556 \end{align*} Compute $10000x+100y+z$. [i]Evan Chen[/i]

2008 AMC 12/AHSME, 17

Let $ a_1,a_2,\dots$ be a sequence of integers determined by the rule $ a_n\equal{}a_{n\minus{}1}/2$ if $ a_{n\minus{}1}$ is even and $ a_n\equal{}3a_{n\minus{}1}\plus{}1$ if $ a_{n\minus{}1}$ is odd. For how many positive integers $ a_1 \le 2008$ is it true that $ a_1$ is less than each of $ a_2$, $ a_3$, and $ a_4$? $ \textbf{(A)}\ 250 \qquad \textbf{(B)}\ 251 \qquad \textbf{(C)}\ 501 \qquad \textbf{(D)}\ 502 \qquad \textbf{(E)}\ 1004$

2004 Iran Team Selection Test, 2

Suppose that $ p$ is a prime number. Prove that the equation $ x^2\minus{}py^2\equal{}\minus{}1$ has a solution if and only if $ p\equiv1\pmod 4$.