Found problems: 112
1991 APMO, 3
Let $a_1$, $a_2$, $\cdots$, $a_n$, $b_1$, $b_2$, $\cdots$, $b_n$ be positive real numbers such that $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$. Show that
\[ \frac{a_1^2}{a_1 + b_1} + \frac{a_2^2}{a_2 + b_2} + \cdots + \frac{a_n^2}{a_n + b_n} \geq \frac{a_1 + a_2 + \cdots + a_n}{2} \]
2005 Romania National Olympiad, 4
Let $x_1,x_2,\ldots,x_n$ be positive reals. Prove that
\[ \frac 1{1+x_1} + \frac 1{1+x_1+x_2} + \cdots + \frac 1{1+x_1+\cdots + x_n} < \sqrt { \frac 1{x_1} + \frac 1{x_2} + \cdots + \frac 1{x_n}} . \]
[i]Bogdan Enescu[/i]
1970 IMO Longlists, 30
Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be real numbers. Prove that
\[1+ \sum_{i=1}^n (u_i+v_i)^2 \leq \frac 43 \Biggr( 1+ \sum_{i=1}^n u_i^2 \Biggl) \Biggr( 1+ \sum_{i=1}^n v_i^2 \Biggl) .\]
1995 IMO Shortlist, 3
Let $ n$ be an integer, $ n \geq 3.$ Let $ a_1, a_2, \ldots, a_n$ be real numbers such that $ 2 \leq a_i \leq 3$ for $ i \equal{} 1, 2, \ldots, n.$ If $ s \equal{} a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n,$ prove that
\[ \frac{a^2_1 \plus{} a^2_2 \minus{} a^2_3}{a_1 \plus{} a_2 \minus{} a_3} \plus{} \frac{a^2_2 \plus{} a^2_3 \minus{} a^2_4}{a_2 \plus{} a_3 \minus{} a_4} \plus{} \ldots \plus{} \frac{a^2_n \plus{} a^2_1 \minus{} a^2_2}{a_n \plus{} a_1 \minus{} a_2} \leq 2s \minus{} 2n.\]
1997 Estonia Team Selection Test, 2
Prove that for all positive real numbers $a_1,a_2,\cdots a_n$ \[\frac{1}{\frac{1}{1+a_1}+\frac{1}{1+a_2}+\cdots +\frac{1}{1+a_n}}-\frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n}}\geq \frac{1}{n}\] When does the inequality hold?
1971 IMO Longlists, 21
Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.
1997 IMO Shortlist, 19
Let $ a_1\geq \cdots \geq a_n \geq a_{n \plus{} 1} \equal{} 0$ be real numbers. Show that
\[ \sqrt {\sum_{k \equal{} 1}^n a_k} \leq \sum_{k \equal{} 1}^n \sqrt k (\sqrt {a_k} \minus{} \sqrt {a_{k \plus{} 1}}).
\]
[i]Proposed by Romania[/i]
2000 All-Russian Olympiad, 2
Let $-1 < x_1 < x_2 , \cdots < x_n < 1$ and $x_1^{13} + x_2^{13} + \cdots + x_n^{13} = x_1 + x_2 + \cdots + x_n$. Prove that if $y_1 < y_2 < \cdots < y_n$, then \[ x_1^{13}y_1 + \cdots + x_n^{13}y_n < x_1y_1 + x_2y_2 + \cdots + x_ny_n. \]
2021 OMpD, 3
Let $a$ and $b$ be positive real numbers, with $a < b$ and let $n$ be a positive integer. Prove that for all real numbers $x_1, x_2, \ldots , x_n \in [a, b]$:
$$ |x_1 - x_2| + |x_2 - x_3| + \cdots + |x_{n-1} - x_n| + |x_n - x_1| \leq \frac{2(b - a)}{b + a}(x_1 + x_2 + \cdots + x_n)$$
And determine for what values of $n$ and $x_1, x_2, \ldots , x_n$ the equality holds.
2016 Germany Team Selection Test, 2
The positive integers $a_1,a_2, \dots, a_n$ are aligned clockwise in a circular line with $n \geq 5$. Let $a_0=a_n$ and $a_{n+1}=a_1$. For each $i \in \{1,2,\dots,n \}$ the quotient \[ q_i=\frac{a_{i-1}+a_{i+1}}{a_i} \] is an integer. Prove \[ 2n \leq q_1+q_2+\dots+q_n < 3n. \]
1991 IMO Shortlist, 26
Let $ n \geq 2, n \in \mathbb{N}$ and let $ p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ satisfying $ \frac{1}{2} \leq p \leq 1,$ $ 0 \leq a_i,$ $ 0 \leq b_i \leq p,$ $ i \equal{} 1, \ldots, n,$ and \[ \sum^n_{i\equal{}1} a_i \equal{} \sum^n_{i\equal{}1} b_i.\] Prove the inequality: \[ \sum^n_{i\equal{}1} b_i \prod^n_{j \equal{} 1, j \neq i} a_j \leq \frac{p}{(n\minus{}1)^{n\minus{}1}}.\]
2011 Belarus Team Selection Test, 3
Let $x_1, \ldots , x_{100}$ be nonnegative real numbers such that $x_i + x_{i+1} + x_{i+2} \leq 1$ for all $i = 1, \ldots , 100$ (we put $x_{101 } = x_1, x_{102} = x_2).$ Find the maximal possible value of the sum $S = \sum^{100}_{i=1} x_i x_{i+2}.$
[i]Proposed by Sergei Berlov, Ilya Bogdanov, Russia[/i]
1999 Kazakhstan National Olympiad, 8
Let $ {{a} _ {1}}, {{a} _ {2}}, \ldots, {{a} _ {n}} $ be permutation of numbers $ 1,2, \ldots, n $, where $ n \geq 2 $.
Find the maximum value of the sum $$ S (n) = | {{a} _ {1}} - {{a} _ {2}} | + | {{a} _ {2}} - {{a} _ {3}} | + \cdots + | {{a} _ {n-1}} - {{a} _ {n}} |. $$
2021 Canadian Junior Mathematical Olympiad, 4
Let $n\geq 2$ be some fixed positive integer and suppose that $a_1, a_2,\dots,a_n$ are positive real numbers satisfying $a_1+a_2+\cdots+a_n=2^n-1$.
Find the minimum possible value of $$\frac{a_1}{1}+\frac{a_2}{1+a_1}+\frac{a_3}{1+a_1+a_2}+\cdots+\frac{a_n}{1+a_1+a_2+\cdots+a_{n-1}}$$
2012 Indonesia MO, 2
Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that
\[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\]
[i]Proposed by Angelo Di Pasquale, Australia[/i]
1998 IMO Shortlist, 1
Let $a_{1},a_{2},\ldots ,a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots +a_{n}<1$. Prove that
\[ \frac{a_{1} a_{2} \cdots a_{n} \left[ 1 - (a_{1} + a_{2} + \cdots + a_{n}) \right] }{(a_{1} + a_{2} + \cdots + a_{n})( 1 - a_{1})(1 - a_{2}) \cdots (1 - a_{n})} \leq \frac{1}{ n^{n+1}}. \]
1984 Balkan MO, 1
Let $n \geq 2$ be a positive integer and $a_{1},\ldots , a_{n}$ be positive real numbers such that $a_{1}+...+a_{n}= 1$. Prove that:
\[\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\geq \frac{n}{2n-1}\]
1988 China National Olympiad, 4
(1) Let $a,b,c$ be positive real numbers satisfying $(a^2+b^2+c^2)^2>2(a^4+b^4+c^4)$. Prove that $a,b,c$ can be the lengths of three sides of a triangle respectively.
(2) Let $a_1,a_2,\dots ,a_n$ be $n$ ($n>3$) positive real numbers satisfying $(a_1^2+a_2^2+\dots +a_n^2)^2>(n-1)(a_1^4+ a_2^4+\dots +a_n^4)$. Prove that any three of $a_1,a_2,\dots ,a_n$ can be the lengths of three sides of a triangle respectively.
2020 South East Mathematical Olympiad, 4
Let $0\leq a_1\leq a_2\leq \cdots\leq a_{n-1}\leq a_n $ and $a_1+a_2+\cdots+a_n=1.$ Prove that: For any non-negative numbers $x_1,x_2,\cdots,x_n ; y_1, y_2,\cdots, y_n$ , have
$$\left(\sum_{i=1}^n a_ix_i - \prod_{i=1}^n x_i^{a_i}\right)
\left(\sum_{i=1}^n a_iy_i - \prod_{i=1}^n y_i^{a_i}\right) \leq
a_n^2\left(n\sqrt{\sum_{i=1}^n x_i\sum_{i=1}^n y_i} - \sum_{i=1}^n\sqrt{x_i} \sum_{i=1}^n\sqrt{y_i}\right)^2.$$
1966 IMO Shortlist, 13
Let $a_1, a_2, \ldots, a_n$ be positive real numbers. Prove the inequality
\[\binom n2 \sum_{i<j} \frac{1}{a_ia_j} \geq 4 \left( \sum_{i<j} \frac{1}{a_i+a_j} \right)^2\]
1967 IMO Longlists, 47
Prove the following inequality:
\[\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1}
x^{n+k-1}_i,\] where $x_i > 0,$ $k \in \mathbb{N}, n \in
\mathbb{N}.$
2004 Romania Team Selection Test, 12
Let $n\geq 2$ be an integer and let $a_1,a_2,\ldots,a_n$ be real numbers. Prove that for any non-empty subset $S\subset \{1,2,3,\ldots, n\}$ we have
\[ \left( \sum_{i \in S} a_i \right)^2 \leq \sum_{1\leq i \leq j \leq n } (a_i + \cdots + a_j ) ^2 . \]
[i]Gabriel Dospinescu[/i]
2017 China Girls Math Olympiad, 5
Let $0=x_0<x_1<\cdots<x_n=1$ .Find the largest real number$ C$ such that for any positive integer $ n $ , we have $$\sum_{k=1}^n x^2_k (x_k - x_{k-1})>C$$
2021 IMO, 2
Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$
1997 Estonia Team Selection Test, 2
Prove that for all positive real numbers $a_1,a_2,\cdots a_n$ \[\frac{1}{\frac{1}{1+a_1}+\frac{1}{1+a_2}+\cdots +\frac{1}{1+a_n}}-\frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots +\frac{1}{a_n}}\geq \frac{1}{n}\] When does the inequality hold?