This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2019 Teodor Topan, 2

Let $ \left( a_n \right)_{n\ge 1} $ be an arithmetic progression with $ a_1=1 $ and natural ratio. [b]a)[/b] Prove that $$ a_n^{1/a_k} <1+\sqrt{\frac{2\left( a_n-1 \right)}{a_k\left( a_k -1 \right)}} , $$ for any natural numbers $ 2\le k\le n. $ [b]b)[/b] Calculate $ \lim_{n\to\infty } \frac{1}{a_n}\sum_{k=1}^n a_n^{1/a_k} . $ [i]Nicolae Bourbăcuț[/i]

2012 Centers of Excellency of Suceava, 3

Let $ a,b,n $ be three natural numbers. Prove that there exists a natural number $ c $ satisfying: $$ \left( \sqrt{a} +\sqrt{b} \right)^n =\sqrt{ c+(a-b)^n} +\sqrt{c} $$ [i]Dan Popescu[/i]

2006 Cezar Ivănescu, 1

[b]a)[/b] $ \lim_{n\to\infty } \frac{1}{n^2}\sum_{i=0}^n\sqrt{\binom{n+i}{2}} $ [b]b)[/b] $ \lim_{n\to\infty } \frac{a^{H_n}}{1+n} ,\quad a>0 $

2003 Alexandru Myller, 2

Prove that $$ (n+2)^n=\prod_{k=1}^{n+1} \sum_{l=1}^{n+1} le^{\frac{2i\pi k (n-l+1)}{n+2}} , $$ for any natural number $ n. $ [i]Mihai Piticari[/i]

2007 Nicolae Coculescu, 2

[b]a)[/b] Prove that there exists two infinite sequences $ \left( a_n \right)_{n\ge 1} ,\left( b_n \right)_{n\ge 1} $ of nonnegative integers such that $ a_n>b_n $ and $ (2+\sqrt 3)^n =a_n (2+\sqrt 3) -b_n , $ for any natural numbers $ n. $ [b]b)[/b] Prove that the equation $ x^2-4xy+y^2=1 $ has infinitely many solutions in $ \mathbb{N}^2. $ [i]Florian Dumitrel[/i]