This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2014 Contests, 1

A positive integer is called [i]tico[/i] if it is the product of three different prime numbers that add up to 74. Verify that 2014 is tico. Which year will be the next tico year? Which one will be the last tico year in history?

2005 MOP Homework, 3

Suppose that $p$ and $q$ are distinct primes and $S$ is a subset of $\{1, 2, ..., p-1\}$. Let $N(S)$ denote the number of ordered $q$-tuples $(x_1,x_2,...,x_q)$ with $x_i \in S$, $1 \le i \le q$, such that $x_1+x_2+...+x_q \cong 0 (mod p)$.

2018 Federal Competition For Advanced Students, P1, 3

Alice and Bob determine a number with $2018$ digits in the decimal system by choosing digits from left to right. Alice starts and then they each choose a digit in turn. They have to observe the rule that each digit must differ from the previously chosen digit modulo $3$. Since Bob will make the last move, he bets that he can make sure that the final number is divisible by $3$. Can Alice avoid that? [i](Proposed by Richard Henner)[/i]

2017 Saudi Arabia IMO TST, 3

Prove that there are infinitely many positive integers $n$ such that $n$ divides $2017^{2017^n-1} - 1$ but n does not divide $2017^n - 1$.

2007 Switzerland - Final Round, 2

Let $a, b, c$ be three integers such that $a + b + c$ is divisible by $13$. Prove that $$a^{2007}+b^{2007}+c^{2007}+2 \cdot 2007abc$$ is divisible by $13$.

2024 Indonesia MO, 2

The triplet of positive integers $(a,b,c)$ with $a<b<c$ is called a [i]fatal[/i] triplet if there exist three nonzero integers $p,q,r$ which satisfy the equation $a^p b^q c^r = 1$. As an example, $(2,3,12)$ is a fatal triplet since $2^2 \cdot 3^1 \cdot (12)^{-1} = 1$. The positive integer $N$ is called [i]fatal[/i] if there exists a fatal triplet $(a,b,c)$ satisfying $N=a+b+c$. (a) Prove that 16 is not [i]fatal[/i]. (b) Prove that all integers bigger than 16 which are [b]not[/b] an integer multiple of 6 are fatal.

1992 Vietnam Team Selection Test, 1

Let two natural number $n > 1$ and $m$ be given. Find the least positive integer $k$ which has the following property: Among $k$ arbitrary integers $a_1, a_2, \ldots, a_k$ satisfying the condition $a_i - a_j$ ( $1 \leq i < j \leq k$) is not divided by $n$, there exist two numbers $a_p, a_s$ ($p \neq s$) such that $m + a_p - a_s$ is divided by $n$.

1983 Poland - Second Round, 4

Let $ a(k) $ be the largest odd number by which $ k $ is divisible. Prove that $$ \sum_{k=1}^{2^n} a(k) = \frac{1}{3}(4^n+2).$$

2023 Czech-Polish-Slovak Junior Match, 5

Mazo performs the following operation on triplets of non-negative integers: If at least one of them is positive, it chooses one positive number, decreases it by one, and replaces the digits in the units place with the other two numbers. It starts with the triple $x$, $y$, $z$. Find a triple of positive integers $x$, $y$, $z$ such that $xy + yz + zx = 1000$ (*) and the number of operations that Mazo can subsequently perform with the triple $x, y, z$ is (a) maximal (i.e. there is no triple of positive integers satisfying (*) that would allow him to do more operations); (b) minimal (i.e. every triple of positive integers satisfying (*) allows him to perform at least so many operations).

2010 AIME Problems, 1

Let $ N$ be the greatest integer multiple of $ 36$ all of whose digits are even and no two of whose digits are the same. Find the remainder when $ N$ is divided by $ 1000$.

Kvant 2019, M2578

Three prime numbers $p,q,r$ and a positive integer $n$ are given such that the numbers \[ \frac{p+n}{qr}, \frac{q+n}{rp}, \frac{r+n}{pq} \] are integers. Prove that $p=q=r $. [i]Nazar Agakhanov[/i]

2021 Canada National Olympiad, 4

A function $f$ from the positive integers to the positive integers is called [i]Canadian[/i] if it satisfies $$\gcd\left(f(f(x)), f(x+y)\right)=\gcd(x, y)$$ for all pairs of positive integers $x$ and $y$. Find all positive integers $m$ such that $f(m)=m$ for all Canadian functions $f$.

2018 Peru Cono Sur TST, 8

Tags: gcd , number theory
For each pair of positive integers $m$ and $n$, we define $f_m(n)$ as follows: $$ f_m(n) = \gcd(n, d_1) + \gcd(n, d_2) + \cdots + \gcd(n, d_k), $$ where $1 = d_1 < d_2 < \cdots < d_k = m$ are all the positive divisors of $m$. For example, $f_4(6) = \gcd(6,1) + \gcd(6,2) + \gcd(6,4) = 5$. $a)\:$ Find all positive integers $n$ such that $f_{2017}(n) = f_n(2017)$. $b)\:$ Find all positive integers $n$ such that $f_6(n) = f_n(6)$.

2017 CHMMC (Fall), 2

Let $N$ be the number of sequences $a_1, a_2, . . . , a_{10}$ of ten positive integers such that (i) the value of each term of the sequence at most $30$, (ii) the arithmetic mean of any three consecutive terms of the sequence is an integer, and (iii) the arithmetic mean of any fi ve consecutive terms of the sequence is an integer. Compute $\sqrt{N}$.

2021 Estonia Team Selection Test, 1

The board has a natural number greater than $1$. At each step, Igor writes the number $n +\frac{n}{p}$ instead of the number $n$ on the board , where $p$ is some prime divisor of $n$. Prove that if Igor continues to rewrite the number infinite times, then he will choose infinitely times the number $3$ as a prime divisor of $p$. [hide=original wording]На доске записано какое-то натуральное число, большее 1. На каждом шагу Игорь переписывает имеющееся на доске число n на число n +n/p, где p - это какой-нибудь простой делитель числа n. Доказать, что если Игорь будет продолжать переписывать число бесконечно долго, то он бесконечно много раз выберет в качестве простого делителя p число 3.[/hide]

2008 Indonesia Juniors, day 1

p1. Circle $M$ is the incircle of ABC, while circle $N$ is the incircle of $ACD$. Circles $M$ and $N$ are tangent at point $E$. If side length $AD = x$ cm, $AB = y$ cm, $BC = z$ cm, find the length of side $DC$ (in terms of $x, y$, and $z$). [img]https://cdn.artofproblemsolving.com/attachments/d/5/66ddc8a27e20e5a3b27ab24ff1eba3abee49a6.png[/img] p2. The address of the house on Jalan Bahagia will be numbered with the following rules: $\bullet$ One side of the road is numbered with consecutive even numbers starting from number $2$. $\bullet$ The opposite side is numbered with an odd number starting from number $3$. $\bullet$ In a row of even numbered houses, there is some land vacant house that has not been built. $\bullet$ The first house numbered $2$ has a neighbor next door. When the RT management ordered the numbers of the house, it is known that the cost of making each digit is $12.000$ Rp. For that, the total cost to be incurred is $1.020.000$ Rp. It is also known that the cost of all even-sided house numbers is $132.000$ Rp. cheaper than the odd side. When the land is empty later a house has been built, the number of houses on the even and odd sides is the same. Determine the number of houses that are now on Jalan Bahagia . p3. Given the following problem: Each element in the set $A = \{10, 11, 12,...,2008\}$ multiplied by each element in the set $B = \{21, 22, 23,...,99\}$. The results are then added together to give value of $X$. Determine the value of $X$. Someone answers the question by multiplying $2016991$ with $4740$. How can you explain that how does that person make sense? p4. Let $P$ be the set of all positive integers between $0$ and $2008$ which can be expressed as the sum of two or more consecutive positive integers . (For example: $11 = 5 + 6$, $90 = 29 + 30 + 31$, $100 = 18 + 19 +20 + 21 + 22$. So $11, 90, 100$ are some members of $P$.) Find the sum of of all members of $P$. p5. A four-digit number will be formed from the numbers at $0, 1, 2, 3, 4, 5$ provided that the numbers in the number are not repeated, and the number formed is a multiple of $3$. What is the probability that the number formed has a value less than $3000$?

2000 France Team Selection Test, 2

A function from the positive integers to the positive integers satisfies these properties 1. $f(ab)=f(a)f(b)$ for any two coprime positive integers $a,b$. 2. $f(p+q)=f(p)+f(q)$ for any two primes $p,q$. Prove that $f(2)=2, f(3)=3, f(1999)=1999$.

2004 Switzerland Team Selection Test, 8

Let $m$ be a fixed integer greater than $1$. The sequence $x_0$, $x_1$, $x_2$, $\ldots$ is defined as follows: \[x_i = \begin{cases}2^i&\text{if }0\leq i \leq m - 1;\\\sum_{j=1}^mx_{i-j}&\text{if }i\geq m.\end{cases}\] Find the greatest $k$ for which the sequence contains $k$ consecutive terms divisible by $m$ . [i]Proposed by Marcin Kuczma, Poland[/i]

2018 Malaysia National Olympiad, A6

A [i]semiprime [/i] is a positive integer that is a product of two prime numbers. For example, $9$ and $10$ are semiprimes. How many semiprimes less than $100$ are there?

2015 MMATHS, 2

Determine, with proof, whether $22!6! + 1$ is prime.

2023 Bulgaria National Olympiad, 1

Let $G$ be a graph on $n\geq 6$ vertices and every vertex is of degree at least 3. If $C_{1}, C_{2}, \dots, C_{k}$ are all the cycles in $G$, determine all possible values of $\gcd(|C_{1}|, |C_{2}|, \dots, |C_{k}|)$ where $|C|$ denotes the number of vertices in the cycle $C$.

2022 Durer Math Competition Finals, 4

Show that the divisors of a number $n \ge 2$ can only be divided into two groups in which the product of the numbers is the same if the product of the divisors of $n$ is a square number.

2021 CMIMC, 2

Let $p_1, p_2, p_3, p_4, p_5, p_6$ be distinct primes greater than $5$. Find the minimum possible value of $$p_1 + p_2 + p_3 + p_4 + p_5 + p_6 - 6\min\left(p_1, p_2, p_3, p_4, p_5, p_6\right)$$ [i]Proposed by Oliver Hayman[/i]

1990 IMO Longlists, 9

Assume that the set of all positive integers is decomposed into $ r$ (disjoint) subsets $ A_1 \cup A_2 \cup \ldots \cup A_r \equal{} \mathbb{N}.$ Prove that one of them, say $ A_i,$ has the following property: There exists a positive $ m$ such that for any $ k$ one can find numbers $ a_1, a_2, \ldots, a_k$ in $ A_i$ with $ 0 < a_{j \plus{} 1} \minus{} a_j \leq m,$ $ (1 \leq j \leq k \minus{} 1)$.

2009 Mid-Michigan MO, 7-9

[b]p1.[/b] Arrange the whole numbers $1$ through $15$ in a row so that the sum of any two adjacent numbers is a perfect square. In how many ways this can be done? [b]p2.[/b] Prove that if $p$ and $q$ are prime numbers which are greater than $3$ then $p^2 - q^2$ is divisible by $24$. [b]p3.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started ”None of you has $8$ legs. Only I have $8$ legs!” Which polyleg has exactly $8$ legs? [b][b]p4.[/b][/b] There is a small puncture (a point) in the wall (as shown in the figure below to the right). The housekeeper has a small flag of the following form (see the figure left). Show on the figure all the points of the wall where you can hammer in a nail such that if you hang the flag it will close up the puncture. [img]https://cdn.artofproblemsolving.com/attachments/a/f/8bb55a3fdfb0aff8e62bc4cf20a2d3436f5d90.png[/img] [b]p5.[/b] Assume $ a, b, c$ are odd integers. Show that the quadratic equation $ax^2 + bx + c = 0$ has no rational solutions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].