Found problems: 15460
2018 International Olympic Revenge, 1
Let $p$ be a prime number, and $X$ be the set of cubes modulo $p$, including $0$. Denote by $C_2(k)$ the number of ordered pairs $(x, y) \in X \times X$ such that $x + y \equiv k \pmod p$. Likewise, denote by $C_3(k)$ the number of ordered pairs $(x, y, z) \in X \times X \times X$ such that $x + y + z \equiv k \pmod p$.
Prove that there are integers $a, b$ such that for all $k$ not in $X$, we have
\[
C_3(k) = a\cdot C_2(k) + b.
\]
[i]Proposed by Murilo Corato, Brazil.[/i]
2024 Macedonian Mathematical Olympiad, Problem 1
Let $M$ be a positive real number. Determine the least positive real number $k$ with the following property: for each integer $n>M$, the interval $(n,kn]$ contains a power of $2$.
2025 Belarusian National Olympiad, 10.4
Is it possible to assign every integral point $(x,y)$ of the plane a positive integer $a_{x,y}$ such that for every two integers $i$ and $j$ the following equality holds $$a_{i,j}=\gcd(a_{i-1,j},a_{i+1,j})+\gcd(a_{i,j-1},a_{i,j+1})$$
[i]M. Shutro[/i]
DMM Individual Rounds, 2018
[b]p1.[/b] Let $f(x) = \frac{3x^3+7x^2-12x+2}{x^2+2x-3}$ . Find all integers $n$ such that $f(n)$ is an integer.
[b]p2.[/b] How many ways are there to arrange $10$ trees in a line where every tree is either a yew or an oak and no two oak trees are adjacent?
[b]p3.[/b] $20$ students sit in a circle in a math class. The teacher randomly selects three students to give a presentation. What is the probability that none of these three students sit next to each other?
[b]p4.[/b] Let $f_0(x) = x + |x - 10| - |x + 10|$, and for $n \ge 1$, let $f_n(x) = |f_{n-1}(x)| - 1$. For how many values of $x$ is $f_{10}(x) = 0$?
[b]p5.[/b] $2$ red balls, $2$ blue balls, and $6$ yellow balls are in a jar. Zion picks $4$ balls from the jar at random. What is the probability that Zion picks at least $1$ red ball and$ 1$ blue ball?
[b]p6.[/b] Let $\vartriangle ABC$ be a right-angled triangle with $\angle ABC = 90^o$ and $AB = 4$. Let $D$ on $AB$ such that $AD = 3DB$ and $\sin \angle ACD = \frac35$ . What is the length of $BC$?
[b]p7.[/b] Find the value of of
$$\dfrac{1}{1 +\dfrac{1}{2+ \dfrac{1}{1+ \dfrac{1}{2+ \dfrac{1}{1+ ...}}}}}$$
[b]p8.[/b] Consider all possible quadrilaterals $ABCD$ that have the following properties; $ABCD$ has integer side lengths with $AB\parallel CD$, the distance between $\overline{AB}$ and $\overline{CD}$ is $20$, and $AB = 18$. What is the maximum area among all these quadrilaterals, minus the minimum area?
[b]p9.[/b] How many perfect cubes exist in the set $\{1^{2018},2^{2017}, 3^{2016},.., 2017^2, 2018^1\}$?
[b]p10.[/b] Let $n$ be the number of ways you can fill a $2018\times 2018$ array with the digits $1$ through $9$ such that for every $11\times 3$ rectangle (not necessarily for every $3 \times 11$ rectangle), the sum of the $33$ integers in the rectangle is divisible by $9$. Compute $\log_3 n$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Saint Petersburg Mathematical Olympiad, 5
In the $100 \times 100$ table in every cell there is natural number. All numbers in same row or column are different.
Can be that for every square sum of numbers, that are in angle cells, is square number ?
2016 Belarus Team Selection Test, 3
Solve the equation $2^a-5^b=3$ in positive integers $a,b$.
2018 Polish Junior MO Finals, 1
Positive odd integers $a, b$ are such that $a^bb^a$ is a perfect square. Show that $ab$ is a perfect square.
2003 China Team Selection Test, 2
Let $x<y$ be positive integers and $P=\frac{x^3-y}{1+xy}$. Find all integer values that $P$ can take.
2017 Saudi Arabia BMO TST, 1
Let $n = p_1p_2... p_{2017}$ be the positive integer where $p_1, p_2, ..., p_{2017}$ are $2017$ distinct odd primes. A triangle is called [i]nice [/i] if it is a right triangle with integer side lengths and the inradius is $n$. Find the number of nice triangles (two triangles are consider different if their tuples of length of sides are different)
2009 Cuba MO, 1
Show that when a prime number is divided by $30$, the remainder is $1$ or a prime number. Shows that if it is divided by $60$ or $90$ the same thing does not happen.
Kvant 2022, M2719
For an odd positive integer $n>1$ define $S_n$ to be the set of the residues of the powers of two, modulo $n{}$. Do there exist distinct $n{}$ and $m{}$ whose corresponding sets $S_n$ and $S_m$ coincide?
[i]Proposed by D. Kuznetsov[/i]
2017 AMC 10, 14
An integer $N$ is selected at random in the range $1\le N \le 2020.$ What is the probability that the remainder when $N^{16}$ is divided by $5$ is $1$?
$\textbf{(A)} \text{ }\frac{1}{5} \qquad \textbf{(B)} \text{ }\frac{2}{5} \qquad \textbf{(C)} \text{ }\frac{3}{5} \qquad \textbf{(D)} \text{ }\frac{4}{5} \qquad \textbf{(E)} \text{ 1}$
1994 Mexico National Olympiad, 1
The sequence $1, 2, 4, 5, 7, 9 ,10, 12, 14, 16, 17, ... $ is formed as follows. First we take one odd number, then two even numbers, then three odd numbers, then four even numbers, and so on. Find the number in the sequence which is closest to $1994$.
2009 ISI B.Math Entrance Exam, 5
Let $p$ be a prime number bigger than $5$. Suppose, the decimal expansion of $\frac{1}{p}$ looks like $0.\overline{a_1a_2\cdots a_r}$ where the line denotes a recurring decimal. Prove that $10^r$ leaves a remainder of $1$ on dividing by $p$.
2014 Contests, 1
Let $p$ be an odd prime.Positive integers $a,b,c,d$ are less than $p$,and satisfy $p|a^2+b^2$ and $p|c^2+d^2$.Prove that exactly one of $ac+bd$ and $ad+bc$ is divisible by $p$
1974 Dutch Mathematical Olympiad, 2
$n>2$ numbers, $ x_1, x_2, ..., x_n$ are odd . Prove that $4$ divides $$ x_1x_2+x_2x_3+...+x_{n-1}x_n+x_nx_1 -n.$$
2019 PUMaC Individual Finals A, B, B1
Find all pairs of nonnegative integers $(n, m)$ such that $2^n = 7^m + 9$.
2016 CHKMO, 2
Find all integral ordered triples $(x,y,z)$ such that $\displaystyle\sqrt{\frac{2015}{x+y}}+\sqrt{\frac{2015}{y+z}}+\sqrt{\frac{2015}{x+z}}$ are positive integers
2010 Contests, 2
A clue “$k$ digits, sum is $n$” gives a number k and the sum of $k$ distinct, nonzero digits. An answer for that clue consists of $k$ digits with sum $n$. For example, the clue “Three digits, sum is $23$” has only one answer: $6,8,9$. The clue “Three digits, sum is $8$” has two answers: $1,3,4$ and $1,2,5$.
If the clue “Four digits, sum is $n$” has the largest number of answers for any four-digit clue, then what is the value of $n$? How many answers does this clue have? Explain why no other four-digit clue can have more answers.
1998 May Olympiad, 5
On planet $X31$ there are only two types of tickets, however the system is not so bad because there are only fifteen full prices that cannot be paid exactly (you pay more and receive change). If $18$ is one of those prices that cannot be paid exactly, find the value of each type of bill.
2019 Mathematical Talent Reward Programme, SAQ: P 4
Are there infinitely many natural numbers $n$ such that the sum of 2019th powers of the digits of $n$ is
equal to $n$ ? [b]You don't need to find any such $n$. Just provide mathematical justification if you
think there are infinitely many or finitely many such natural numbers[/b]
2001 South africa National Olympiad, 3
For a certain real number $x$, the differences between $x^{1919}$, $x^{1960}$ and $x^{2001}$ are all integers. Prove that $x$ is an integer.
1978 Bundeswettbewerb Mathematik, 4
A prime number has the property that however its decimal digits are permuted, the obtained number is also prime. Prove that this number has at most three different digits. Also prove a stronger statement.
Math Hour Olympiad, Grades 5-7, 2014.57
[u]Round 1[/u]
[b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road.
Whenever one snail passed another, it waved at the snail it passed.
During the race, Alice waved $3$ times and was waved at twice.
Bobby waved $4$ times and was waved at $3$ times.
Cindy waved $5$ times. How many times was she waved at?
[b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser?
[b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”?
[b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw?
[img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img]
[b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them?
[u]Round 2[/u]
[b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses?
[b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img]
As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet.
For example, if the provinces are occupied as shown here, the squares mark possible meeting spots.
[img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1992 China Team Selection Test, 3
For any prime $p$, prove that there exists integer $x_0$ such that $p | (x^2_0 - x_0 + 3)$ $\Leftrightarrow$ there exists integer $y_0$ such that $p | (y^2_0 - y_0 + 25).$