This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2010 Saudi Arabia BMO TST, 4

Find all primes $p, q$ satisfying the equation $2p^q - q^p = 7.$

2012 Indonesia TST, 4

Given a non-zero integer $y$ and a positive integer $n$. If $x_1, x_2, \ldots, x_n \in \mathbb{Z} - \{0, 1\}$ and $z \in \mathbb{Z}^+$ satisfy $(x_1x_2 \ldots x_n)^2y \le 2^{2(n+1)}$ and $x_1x_2 \ldots x_ny = z + 1$, prove that there is a prime among $x_1, x_2, \ldots, x_n, z$. [color=blue]It appears that the problem statement is incorrect; suppose $y = 5, n = 2$, then $x_1 = x_2 = -1$ and $z = 4$. They all satisfy the problem's conditions, but none of $x_1, x_2, z$ is a prime. What should the problem be, or did I misinterpret the problem badly?[/color]

2000 Mongolian Mathematical Olympiad, Problem 1

Let $\operatorname{rad}(k)$ denote the product of prime divisors of a natural number $k$ (define $\operatorname{rad}(1)=1$). A sequence $(a_n)$ is defined by setting $a_1$ arbitrarily, and $a_{n+1}=a_n+\operatorname{rad}(a_n)$ for $n\ge1$. Prove that the sequence $(a_n)$ contains arithmetic progressions of arbitrary length.

2018 China Second Round Olympiad, 4

Define sequence $\{a_n\}$: $a_1$ is any positive integer, and for any positive integer $n\ge 1$, $a_{n+1}$ is the smallest positive integer coprime to $\sum_{i=1}^{n} a_i$ and not equal to $a_1,\ldots, a_n$. Prove that every positive integer appears in the sequence $\{a_n\}$.

2021 Moldova Team Selection Test, 8

Determine all positive integers $n$ such that $\frac{a^2+n^2}{b^2-n^2}$ is a positive integer for some $a,b\in \mathbb{N}$. $Turkey$

2018 Turkey Team Selection Test, 7

For integers $a, b$, call the lattice point with coordinates $(a,b)$ [b]basic[/b] if $gcd(a,b)=1$. A graph takes the basic points as vertices and the edges are drawn in such way: There is an edge between $(a_1,b_1)$ and $(a_2,b_2)$ if and only if $2a_1=2a_2\in \{b_1-b_2, b_2-b_1\}$ or $2b_1=2b_2\in\{a_1-a_2, a_2-a_1\}$. Some of the edges will be erased, such that the remaining graph is a forest. At least how many edges must be erased to obtain this forest? At least how many trees exist in such a forest?

2013 Math Prize For Girls Problems, 19

If $n$ is a positive integer, let $\phi(n)$ be the number of positive integers less than or equal to $n$ that are relatively prime to $n$. Compute the value of the infinite sum \[ \sum_{n=1}^\infty \frac{\phi(n) 2^n}{9^n - 2^n} \, . \]

2010 Dutch IMO TST, 5

The polynomial $A(x) = x^2 + ax + b$ with integer coefficients has the following property: for each prime $p$ there is an integer $k$ such that $A(k)$ and $A(k + 1)$ are both divisible by $p$. Proof that there is an integer $m$ such that $A(m) = A(m + 1) = 0$.

2016 India IMO Training Camp, 3

Let $\mathbb N$ denote the set of all natural numbers. Show that there exists two nonempty subsets $A$ and $B$ of $\mathbb N$ such that [list=1] [*] $A\cap B=\{1\};$ [*] every number in $\mathbb N$ can be expressed as the product of a number in $A$ and a number in $B$; [*] each prime number is a divisor of some number in $A$ and also some number in $B$; [*] one of the sets $A$ and $B$ has the following property: if the numbers in this set are written as $x_1<x_2<x_3<\cdots$, then for any given positive integer $M$ there exists $k\in \mathbb N$ such that $x_{k+1}-x_k\ge M$. [*] Each set has infinitely many composite numbers. [/list]

2022 China Team Selection Test, 2

Let $p$ be a prime, $A$ is an infinite set of integers. Prove that there is a subset $B$ of $A$ with $2p-2$ elements, such that the arithmetic mean of any pairwise distinct $p$ elements in $B$ does not belong to $A$.

2005 MOP Homework, 3

For any positive integer $n$, the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n}$ is written in the lowest form $\frac{p_n}{q_n}$; that is, $p_n$ and $q_n$ are relatively prime positive integers. Find all $n$ such that $p_n$ is divisible by $3$.

2022 Paraguay Mathematical Olympiad, 4

Karina, Leticia and Milena paint glass bottles and sell them as decoration. they had $100$ bottles, and they decorated them in such a way that each bottle was painted by a single person. After the finished, they put all the bottles on a table. In an oversight one of them pushed the table, falling and breaking exactly $\frac18$ of the bottles that Karina painted, $\frac13$ of the bottles that Milena, painted and $\frac16$ of the bottles that Leticia painted. In total, $82$ painted bottles remained unbroken. Knowing that the number of broken bottles that Milena had painted is equal to the average of the amounts of broken bottles painted by Karina and Leticia, how many bottles did each of them paint?

2018 BMT Spring, 9

Compute the following: $$\sum^{99}_{x=0} (x^2 + 1)^{-1} \,\,\, (mod \,\,\,199)$$ where $x^{-1}$ is the value $0 \le y \le 199$ such that $xy - 1$ is divisible by $199$.

2004 Postal Coaching, 20

Three numbers $N,n,r$ are such that the digits of $N,n,r$ taken together are formed by $1,2,3,4,5,6,7,8,9$ without repetition. If $N = n^2 - r$, find all possible combinations of $N,n,r$.

2008 Greece JBMO TST, 4

Product of two integers is $1$ less than three times of their sum. Find those integers.

2019 Durer Math Competition Finals, 3

Determine all triples $(p, q, r)$ of prime numbers for which $p^q + p^r$ is a perfect square.

1982 Bundeswettbewerb Mathematik, 4

Let $n$ be a positive integer. If $4^n + 2^n + 1$ is a prime, prove that $n$ is a power of three.

MMPC Part II 1958 - 95, 1974

[b]p1.[/b] Let $S$ be the sum of the $99$ terms: $$(\sqrt1 + \sqrt2)^{-1},(\sqrt2 + \sqrt3)^{-1}, (\sqrt3 + \sqrt4)^{-1},..., (\sqrt{99} + \sqrt{100})^{-1}.$$ Prove that $S$ is an integer. [b]p2.[/b] Determine all pairs of positive integers $x$ and $y$ for which $N=x^4+4y^4$ is a prime. (Your work should indicate why no other solutions are possible.) [b]p3.[/b] Let $w,x,y,z$ be arbitrary positive real numbers. Prove each inequality: (a) $xy \le \left(\frac{x+y}{2}\right)^2$ (b) $wxyz \le \left(\frac{w+x+y+z}{4}\right)^4$ (c) $xyz \le \left(\frac{x+y+z}{3}\right)^3$ [b]p4.[/b] Twelve points $P_1$,$P_2$, $...$,$P_{12}$ are equally spaaed on a circle, as shown. Prove: that the chords $\overline{P_1P_9}$, $\overline{P_4P_{12}}$ and $\overline{P_2P_{11}}$ have a point in common. [img]https://cdn.artofproblemsolving.com/attachments/d/4/2eb343fd1f9238ebcc6137f7c84a5f621eb277.png[/img] [b]p5.[/b] Two very busy men, $A$ and $B$, who wish to confer, agree to appear at a designated place on a certain day, but no earlier than noon and no later than $12:15$ p.m. If necessary, $A$ will wait $6$ minutes for $B$ to arrive, while $B$ will wait $9$ minutes for $A$ to arrive but neither can stay past $12:15$ p.m. Express as a percent their chance of meeting. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 Romania Team Selection Test, 1

a) Prove that it is possible to choose one number out of any 39 consecutive positive integers, having the sum of its digits divisible by 11; b) Find the first 38 consecutive positive integers none of which have the sum of its digits divisible by 11.

2013 EGMO, 3

Let $n$ be a positive integer. (a) Prove that there exists a set $S$ of $6n$ pairwise different positive integers, such that the least common multiple of any two elements of $S$ is no larger than $32n^2$. (b) Prove that every set $T$ of $6n$ pairwise different positive integers contains two elements the least common multiple of which is larger than $9n^2$.

2013 Dutch BxMO/EGMO TST, 3

Find all triples $(x,n,p)$ of positive integers $x$ and $n$ and primes $p$ for which the following holds $x^3 + 3x + 14 = 2 p^n$

2007 Pre-Preparation Course Examination, 1

Let $a\geq 2$ be a natural number. Prove that $\sum_{n=0}^\infty\frac1{a^{n^{2}}}$ is irrational.

2011 Saudi Arabia Pre-TST, 1.2

Find all primes $q_1, q_2, q_3, q_4, q_5$ such that $q_1^4+q_2^4+q_3^4+q_4^4+q_5^4$ is the product of two consecutive even integers.

2014 Contests, 1

For $x, y$ positive integers, $x^2-4y+1$ is a multiple of $(x-2y)(1-2y)$. Prove that $|x-2y|$ is a square number.

2008 Serbia National Math Olympiad, 5

The sequence $ (a_n)_{n\ge 1}$ is defined by $ a_1 \equal{} 3$, $ a_2 \equal{} 11$ and $ a_n \equal{} 4a_{n\minus{}1}\minus{}a_{n\minus{}2}$, for $ n \ge 3$. Prove that each term of this sequence is of the form $ a^2 \plus{} 2b^2$ for some natural numbers $ a$ and $ b$.