Found problems: 15460
2007 ITest, 34
Let $a/b$ be the probability that a randomly selected divisor of $2007$ is a multiple of $3$. If $a$ and $b$ are relatively prime positive integers, find $a+b$.
2007 Miklós Schweitzer, 3
Denote by $\omega (n)$ the number of prime divisors of the natural number $n$ (without multiplicities). Let
$$F(x)=\max_{n\leq x} \omega (n) \,\,\,\,\,\,\,\,\,\,\,\,\, G(x)=\max_{n\leq x} \left( \omega (n) + \omega (n^2+1)\right)$$
Prove that $G(x)-F(x)\to \infty$ as $x\to\infty$.
(translated by Miklós Maróti)
Oliforum Contest IV 2013, 5
Let $x,y,z$ be distinct positive integers such that $(y+z)(z+x)=(x+y)^2$ . Show that \[x^2+y^2>8(x+y)+2(xy+1).\] (Paolo Leonetti)
2021 Belarusian National Olympiad, 9.5
Prove that for some positive integer $n$ there exist positive integers $a$,$b$ and $c$ such that $a^2-n=xy$, $b^2-n=yz$ and $c^2-n=xz$ where $x,y$ and $z$ - some pairwise different positive integers.
2019 ELMO Shortlist, N4
A positive integer $b$ and a sequence $a_0,a_1,a_2,\dots$ of integers $0\le a_i<b$ is given. It is known that $a_0\neq 0$ and the sequence $\{a_i\}$ is eventually periodic but has infinitely many nonzero terms. Let $S$ be the set of positive integers $n$ so that $n\mid (a_0a_1\dots a_n)_b$. Given that $S$ is infinite, show that there are infinitely many primes that divide at least one element of $S$.
[i]Proposed by Carl Schildkraut and Holden Mui[/i]
2017 HMIC, 1
Kevin and Yang are playing a game. Yang has $2017 + \tbinom{2017}{2}$ cards with their front sides face down on the table. The cards are constructed as follows: [list] [*] For each $1 \le n \le 2017$, there is a blue card with $n$ written on the back, and a fraction $\tfrac{a_n}{b_n}$ written on the front, where $\gcd(a_n, b_n) = 1$ and $a_n, b_n > 0$. [*] For each $1 \le i < j \le 2017$, there is a red card with $(i, j)$ written on the back, and a fraction $\tfrac{a_i+a_j}{b_i+b_j}$ written on the front. [/list] It is given no two cards have equal fractions. In a turn Kevin can pick any two cards and Yang tells Kevin which card has the larger fraction on the front. Show that, in fewer than $10000$ turns, Kevin can determine which red card has the largest fraction out of all of the red cards.
2024 Brazil Cono Sur TST, 1
For positive integers $n$ and $k \geq 2$, define $E_k(n)$ as the greatest exponent $r$ such that $k^r$ divides $n!$. Prove that there are infinitely many $n$ such that $E_{10}(n) > E_9(n)$ and infinitely many $m$ such that $E_{10}(m) < E_9(m)$.
2010 Contests, 1
Let $n$ be a positive integer. Let $T_n$ be a set of positive integers such that:
\[{T_n={ \{11(k+h)+10(n^k+n^h)| (1 \leq k,h \leq 10)}}\}\]
Find all $n$ for which there don't exist two distinct positive integers $a, b \in T_n$ such that $a\equiv b \pmod{110}$
2022/2023 Tournament of Towns, P4
Is it possible to colour all integers greater than $1{}$ in three colours (each integer in one colour, all three colours must be used) so that the colour of the product of any two differently coloured numbers is different from the colour of each of the factors?
2004 All-Russian Olympiad Regional Round, 8.5
Can a set of six numbers $\left\{a, b,c, \frac{a^2}{b} , \frac{b^2}{c} , \frac{c^2}{a} \right\}$ , where $a, b, c$ positive numbers, turn out to be exactly exactly three different numbers?
1973 AMC 12/AHSME, 19
Define $ n_a!$ for $ n$ and $ a$ positive to be
\[ n_a ! \equal{} n (n\minus{}a)(n\minus{}2a)(n\minus{}3a)...(n\minus{}ka)\]
where $ k$ is the greatest integer for which $ n>ka$. Then the quotient $ 72_8!/18_2!$ is equal to
$ \textbf{(A)}\ 4^5 \qquad
\textbf{(B)}\ 4^6 \qquad
\textbf{(C)}\ 4^8 \qquad
\textbf{(D)}\ 4^9 \qquad
\textbf{(E)}\ 4^{12}$
2015 Czech-Polish-Slovak Junior Match, 5
Determine all natural numbers$ n> 1$ with the property:
For each divisor $d> 1$ of number $n$, then $d - 1$ is a divisor of $n - 1$.
2005 Iran MO (3rd Round), 3
For each $m\in \mathbb N$ we define $rad\ (m)=\prod p_i$, where $m=\prod p_i^{\alpha_i}$.
[b]abc Conjecture[/b]
Suppose $\epsilon >0$ is an arbitrary number, then there exist $K$ depinding on $\epsilon$ that for each 3 numbers $a,b,c\in\mathbb Z$ that $gcd (a,b)=1$ and $a+b=c$ then: \[ max\{|a|,|b|,|c|\}\leq K(rad\ (abc))^{1+\epsilon} \]
Now prove each of the following statements by using the $abc$ conjecture :
a) Fermat's last theorem for $n>N$ where $N$ is some natural number.
b) We call $n=\prod p_i^{\alpha_i}$ strong if and only $\alpha_i\geq 2$.
c) Prove that there are finitely many $n$ such that $n,\ n+1,\ n+2$ are strong.
d) Prove that there are finitely many rational numbers $\frac pq$ such that: \[ \Big| \sqrt[3]{2}-\frac pq \Big|<\frac{2^ {1384}}{q^3} \]
2000 District Olympiad (Hunedoara), 2
[b]a)[/b] Let $ a,b $ two non-negative integers such that $ a^2>b. $ Show that the equation
$$ \left\lfloor\sqrt{x^2+2ax+b}\right\rfloor =x+a-1 $$
has an infinite number of solutions in the non-negative integers. Here, $ \lfloor\alpha\rfloor $ denotes the floor of $ \alpha. $
[b]b)[/b] Find the floor of $ m=\sqrt{2+\sqrt{2+\underbrace{\cdots}_{\text{n times}}+\sqrt{2}}} , $ where $ n $ is a natural number. Justify.
2017 Balkan MO Shortlist, N4
Find all pairs of positive integers $(x,y)$ , such that $x^2$ is divisible by $2xy^2 -y^3 +1$.
2002 China Team Selection Test, 3
The positive integers $ \alpha, \beta, \gamma$ are the roots of a polynomial $ f(x)$ with degree $ 4$ and the coefficient of the first term is $ 1$. If there exists an integer such that $ f(\minus{}1)\equal{}f^2(s)$.
Prove that $ \alpha\beta$ is not a perfect square.
2019 Saudi Arabia BMO TST, 1
Let $p$ be an odd prime number.
a) Show that $p$ divides $n2^n + 1$ for infinitely many positive integers n.
b) Find all $n$ satisfy condition above when $p = 3$
2020 EGMO, 1
The positive integers $a_0, a_1, a_2, \ldots, a_{3030}$ satisfy $$2a_{n + 2} = a_{n + 1} + 4a_n \text{ for } n = 0, 1, 2, \ldots, 3028.$$
Prove that at least one of the numbers $a_0, a_1, a_2, \ldots, a_{3030}$ is divisible by $2^{2020}$.
2006 Iran MO (3rd Round), 6
a) $P(x),R(x)$ are polynomials with rational coefficients and $P(x)$ is not the zero polynomial. Prove that there exist a non-zero polynomial $Q(x)\in\mathbb Q[x]$ that \[P(x)\mid Q(R(x)).\] b) $P,R$ are polynomial with integer coefficients and $P$ is monic. Prove that there exist a monic polynomial $Q(x)\in\mathbb Z[x]$ that \[P(x)\mid Q(R(x)).\]
2019 Austrian Junior Regional Competition, 4
Let $p, q, r$ and $s$ be four prime numbers such that $$5 <p <q <r <s <p + 10.$$
Prove that the sum of the four prime numbers is divisible by $60$.
(Walther Janous)
2016 Azerbaijan Balkan MO TST, 2
Set $A$ consists of natural numbers such that these numbers can be expressed as $2x^2+3y^2,$ where $x$ and $y$ are integers. $(x^2+y^2\not=0)$
$a)$ Prove that there is no perfect square in the set $A.$
$b)$ Prove that multiple of odd number of elements of the set $A$ cannot be a perfect square.
1969 IMO Longlists, 18
$(FRA 1)$ Let $a$ and $b$ be two nonnegative integers. Denote by $H(a, b)$ the set of numbers $n$ of the form $n = pa + qb,$ where $p$ and $q$ are positive integers. Determine $H(a) = H(a, a)$. Prove that if $a \neq b,$ it is enough to know all the sets $H(a, b)$ for coprime numbers $a, b$ in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers $a$ and $b, H(a, b)$ contains all numbers greater than or equal to $\omega = (a - 1)(b -1)$ and also $\frac{\omega}{2}$ numbers smaller than $\omega$
2015 Kyiv Math Festival, P3
Is it true that every positive integer greater than 30 is a sum of 4 positive integers such that each two of them have a common divisor greater than 1?
2011 Iran MO (3rd Round), 6
$a$ is an integer and $p$ is a prime number and we have $p\ge 17$. Suppose that $S=\{1,2,....,p-1\}$ and $T=\{y|1\le y\le p-1,ord_p(y)<p-1\}$. Prove that there are at least $4(p-3)(p-1)^{p-4}$ functions $f:S\longrightarrow S$ satisfying
$\sum_{x\in T} x^{f(x)}\equiv a$ $(mod$ $p)$.
[i]proposed by Mahyar Sefidgaran[/i]
2015 Balkan MO Shortlist, N4
Find all pairs of positive integers $(x,y)$ with the following property:
If $a,b$ are relative prime and positive divisors of $ x^3 + y^3$, then $a+b - 1$ is divisor of $x^3+y^3$.
(Cyprus)