This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2018 Romania Team Selection Tests, 2

Determine all integers $ n\geq 2$ having the following property: for any integers $a_1,a_2,\ldots, a_n$ whose sum is not divisible by $n$, there exists an index $1 \leq i \leq n$ such that none of the numbers $$a_i,a_i+a_{i+1},\ldots,a_i+a_{i+1}+\ldots+a_{i+n-1}$$ is divisible by $n$. Here, we let $a_i=a_{i-n}$ when $i >n$. [i]Proposed by Warut Suksompong, Thailand[/i]

2003 Croatia National Olympiad, Problem 1

Show that a triangle whose side lengths are prime numbers cannot have integer area.

1999 ITAMO, 6

(a) Find all pairs $(x,k)$ of positive integers such that $3^k -1 = x^3$ . (b) Prove that if $n > 1$ is an integer, $n \ne 3$, then there are no pairs $(x,k)$ of positive integers such that $3^k -1 = x^n$.

1997 IMO Shortlist, 15

An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer. Show that it contains the sixth power of an integer.

2016 Korea Summer Program Practice Test, 6

A finite set $S$ of positive integers is given. Show that there is a positive integer $N$ dependent only on $S$, such that any $x_1, \dots, x_m \in S$ whose sum is a multiple of $N$, can be partitioned into groups each of whose sum is exactly $N$. (The numbers $x_1, \dots, x_m$ need not be distinct.)

2020 Cono Sur Olympiad, 2

Given $2021$ distinct positive integers non divisible by $2^{1010}$, show that it's always possible to choose $3$ of them $a$, $b$ and $c$, such that $|b^2-4ac|$ is not a perfect square.

2013 India IMO Training Camp, 1

For a prime $p$, a natural number $n$ and an integer $a$, we let $S_n(a,p)$ denote the exponent of $p$ in the prime factorisation of $a^{p^n} - 1$. For example, $S_1(4,3) = 2$ and $S_2(6,2) = 0$. Find all pairs $(n,p)$ such that $S_n(2013,p) = 100$.

1998 AMC 12/AHSME, 28

In triangle $ ABC$, angle $ C$ is a right angle and $ CB > CA$. Point $ D$ is located on $ \overline{BC}$ so that angle $ CAD$ is twice angle $ DAB$. If $ AC/AD \equal{} 2/3$, then $ CD/BD \equal{} m/n$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$. $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 14\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 22\qquad \textbf{(E)}\ 26$

2010 Hanoi Open Mathematics Competitions, 2

Find the number of integer $n$ from the set $\{2000,2001,...,2010\}$ such that $2^{2n} + 2^n + 5$ is divisible by $7$ (A): $0$, (B): $1$, (C): $2$, (D): $3$, (E) None of the above.

2020 Purple Comet Problems, 13

Find the number of three-digit palindromes that are divisible by $3$. Recall that a palindrome is a number that reads the same forward and backward like $727$ or $905509$.

2007 Pre-Preparation Course Examination, 15

Does there exists a subset of positive integers with infinite members such that for every two members $a,b$ of this set \[a^2-ab+b^2|(ab)^2\]

1998 Swedish Mathematical Competition, 5

Show that for any $n > 5$ we can find positive integers $x_1, x_2, ... , x_n$ such that $\frac{1}{x_1} + \frac{1}{x_2} +... + \frac{1}{x_n} = \frac{1997}{1998}$. Show that in any such equation there must be two of the $n$ numbers with a common divisor ($> 1$).

2007 Cuba MO, 2

Find three different positive integers whose sum is minimum than meet the condition that the sum of each pair of them is a perfect square.

2017 Thailand TSTST, 2

$\text{(i)}$ Does there exist a positive integer $m > 2016^{2016}$ such that $\frac{2016^m-m^{2016}}{m+2016}$ is a positive integer? $\text{(ii)}$ Does there exist a positive integer $m > 2017^{2017}$ such that $\frac{2017^m-m^{2017}}{m+2017}$ is a positive integer? [i](Serbia MO 2016 P1)[/i]

1965 Polish MO Finals, 4

Prove that if the integers $ a $ and $ b $ satisfy the equation $$ 2a^2 + a = 3b^2 + b,$$ then the numbers $ a - b $ and $ 2a + 2b + 1 $ are squares of integers.

2016 Bosnia and Herzegovina Junior BMO TST, 1

Prove that it is not possible that numbers $(n+1)\cdot 2^n$ and $(n+3)\cdot 2^{n+2}$ are perfect squares, where $n$ is positive integer.

2024 ELMO Shortlist, N3

Given a positive integer $k$, find all polynomials $P$ of degree $k$ with integer coefficients such that for all positive integers $n$ where all of $P(n)$, $P(2024n)$, $P(2024^2n)$ are nonzero, we have $$\frac{\gcd(P(2024n), P(2024^2n))}{\gcd(P(n), P(2024n))}=2024^k.$$ [i]Allen Wang[/i]

2022 Macedonian Team Selection Test, Problem 5

Given is an arithmetic progression {$a_n$} of positive integers. Prove that there exist infinitely many $k$, such that $\omega (a_k)$ is even and $\omega (a_{k+1})$ is odd ($\omega (n)$ is the number of distinct prime factors of $n$). $\textit {Proposed by Viktor Simjanoski and Nikola Velov}$

2012 USA Team Selection Test, 3

Determine, with proof, whether or not there exist integers $a,b,c>2010$ satisfying the equation \[a^3+2b^3+4c^3=6abc+1.\]

1953 Kurschak Competition, 2

$n$ and $d$ are positive integers such that $d$ divides $2n^2$. Prove that $n^2 + d$ cannot be a square.

2018 Kürschák Competition, 2

Given a prime number $p$ and let $\overline{v_1},\overline{v_2},\dotsc ,\overline{v_n}$ be $n$ distinct vectors of length $p$ with integer coordinates in an $\mathbb{R}^3$ Cartesian coordinate system. Suppose that for any $1\leqslant j<k\leqslant n$, there exists an integer $0<\ell <p$ such that all three coordinates of $\overline{v_j} -\ell \cdot \overline{v_k} $ is divisible by $p$. Prove that $n\leqslant 6$.

1913 Eotvos Mathematical Competition, 3

Let $d$ denote the greatest common divisor of the natural numbers $a$ and $b$, and let $d'$ denote the greatest common divisor of the natural numbers $a'$ and $b'$. Prove that $dd'$ is the greatest common divisor of the four numbers $$ aa' , \ \ ab' , \ \ ba' , \ \ bb' .$$

2018 BmMT, Team Round

[b]p1.[/b] What is the sum of the first $12$ positive integers? [b]p2.[/b] How many positive integers less than or equal to $100$ are multiples of both $2$ and $5$? [b]p3. [/b]Alex has a bag with $4$ white marbles and $4$ black marbles. She takes $2$ marbles from the bag without replacement. What is the probability that both marbles she took are black? Express your answer as a decimal or a fraction in lowest terms. [b]p4.[/b] How many $5$-digit numbers are there where each digit is either $1$ or $2$? [b]p5.[/b] An integer $a$ with $1\le a \le 10$ is randomly selected. What is the probability that $\frac{100}{a}$ is an integer? Express your answer as decimal or a fraction in lowest terms. [b]p6.[/b] Two distinct non-tangent circles are drawn so that they intersect each other. A third circle, distinct from the previous two, is drawn. Let $P$ be the number of points of intersection between any two circles. How many possible values of $P$ are there? [b]p7.[/b] Let $x, y, z$ be nonzero real numbers such that $x + y + z = xyz$. Compute $$\frac{1 + yz}{yz}+\frac{1 + xz}{xz}+\frac{1 + xy}{xy}.$$ [b]p8.[/b] How many positive integers less than $106$ are simultaneously perfect squares, cubes, and fourth powers? [b]p9.[/b] Let $C_1$ and $C_2$ be two circles centered at point $O$ of radii $1$ and $2$, respectively. Let $A$ be a point on $C_2$. We draw the two lines tangent to $C_1$ that pass through $A$, and label their other intersections with $C_2$ as $B$ and $C$. Let x be the length of minor arc $BC$, as shown. Compute $x$. [img]https://cdn.artofproblemsolving.com/attachments/7/5/915216d4b7eba0650d63b26715113e79daa176.png[/img] [b]p10.[/b] A circle of area $\pi$ is inscribed in an equilateral triangle. Find the area of the triangle. [b]p11.[/b] Julie runs a $2$ mile route every morning. She notices that if she jogs the route $2$ miles per hour faster than normal, then she will finish the route $5$ minutes faster. How fast (in miles per hour) does she normally jog? [b]p12.[/b] Let $ABCD$ be a square of side length $10$. Let $EFGH$ be a square of side length $15$ such that $E$ is the center of $ABCD$, $EF$ intersects $BC$ at $X$, and $EH$ intersects $CD$ at $Y$ (shown below). If $BX = 7$, what is the area of quadrilateral $EXCY$ ? [img]https://cdn.artofproblemsolving.com/attachments/d/b/2b2d6de789310036bc42d1e8bcf3931316c922.png[/img] [b]p13.[/b] How many solutions are there to the system of equations $$a^2 + b^2 = c^2$$ $$(a + 1)^2 + (b + 1)^2 = (c + 1)^2$$ if $a, b$, and $c$ are positive integers? [b]p14.[/b] A square of side length $ s$ is inscribed in a semicircle of radius $ r$ as shown. Compute $\frac{s}{r}$. [img]https://cdn.artofproblemsolving.com/attachments/5/f/22d7516efa240d00d6a9743a4dc204d23d190d.png[/img] [b]p15.[/b] $S$ is a collection of integers n with $1 \le n \le 50$ so that each integer in $S$ is composite and relatively prime to every other integer in $S$. What is the largest possible number of integers in $S$? [b]p16.[/b] Let $ABCD$ be a regular tetrahedron and let $W, X, Y, Z$ denote the centers of faces $ABC$, $BCD$, $CDA$, and $DAB$, respectively. What is the ratio of the volumes of tetrahedrons $WXYZ$ and $WAYZ$? Express your answer as a decimal or a fraction in lowest terms. [b]p17.[/b] Consider a random permutation $\{s_1, s_2, ... , s_8\}$ of $\{1, 1, 1, 1, -1, -1, -1, -1\}$. Let $S$ be the largest of the numbers $s_1$, $s_1 + s_2$, $s_1 + s_2 + s_3$, $...$ , $s_1 + s_2 + ... + s_8$. What is the probability that $S$ is exactly $3$? Express your answer as a decimal or a fraction in lowest terms. [b]p18.[/b] A positive integer is called [i]almost-kinda-semi-prime[/i] if it has a prime number of positive integer divisors. Given that there $are 168$ primes less than $1000$, how many almost-kinda-semi-prime numbers are there less than $1000$? [b]p19.[/b] Let $ABCD$ be a unit square and let $X, Y, Z$ be points on sides $AB$, $BC$, $CD$, respectively, such that $AX = BY = CZ$. If the area of triangle $XYZ$ is $\frac13$ , what is the maximum value of the ratio $XB/AX$? [img]https://cdn.artofproblemsolving.com/attachments/5/6/cf77e40f8e9bb03dea8e7e728b21e7fb899d3e.png[/img] [b]p20.[/b] Positive integers $a \le b \le c$ have the property that each of $a + b$, $b + c$, and $c + a$ are prime. If $a + b + c$ has exactly $4$ positive divisors, find the fourth smallest possible value of the product $c(c + b)(c + b + a)$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Saudi Arabia BMO TST, 1

Prove that there are infinitely many positive integer $n$ such that $n!$ is divisible by $n^3 -1$.

2020 Malaysia IMONST 1, 15

Find the sum of all integers $n$ that fulfill the equation \[2^n(6-n)=8n.\]