This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2017 Czech-Polish-Slovak Junior Match, 6

On the board are written $100$ mutually different positive real numbers, such that for any three different numbers $a, b, c$ is $a^2 + bc$ is an integer. Prove that for any two numbers $x, y$ from the board , number $\frac{x}{y}$ is rational.

2016 Lusophon Mathematical Olympiad, 6

Source: Lusophon MO 2016 Prove that any positive power of $2$ can be written as: $$5xy-x^2-2y^2$$ where $x$ and $y$ are odd numbers.

1999 All-Russian Olympiad, 6

Prove that for all natural numbers $n$, \[ \sum_{k=1}^{n^2} \left\{ \sqrt{k} \right\} \le \frac{n^2-1}{2}. \] Here, $\{x\}$ denotes the fractional part of $x$.

Russian TST 2020, P2

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

1993 Austrian-Polish Competition, 4

The Fibonacci numbers are defined by $ F_0 \equal{} 1, F_1 \equal{} 1, F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n$. The positive integers $ A, B$ are such that $ A^{19}$ divides $ B^{93}$ and $ B^{19}$ divides $ A^{93}$. Show that if $ h < k$ are consecutive Fibonacci numbers then $ (AB)^h$ divides $ (A^4 \plus{} B^8)^k$

2025 Ukraine National Mathematical Olympiad, 10.3

It is known that some \(d\) distinct divisors of a positive integer number \(n\) form an arithmetic progression. Prove that the number \(n\) has at least \(2d - 2\) divisors. [i]Proposed by Anton Trygub[/i]

2005 All-Russian Olympiad, 2

Lesha put numbers from 1 to $22^2$ into cells of $22\times 22$ board. Can Oleg always choose two cells, adjacent by the side or by vertex, the sum of numbers in which is divisible by 4?

2018 Saudi Arabia GMO TST, 2

Two positive integers $m$ and $n$ are called [i]similar [/i] if one of them can be obtained from the other one by swapping two digits (note that a $0$-digit cannot be swapped with the leading digit). Find the greatest integer $N$ such that N is divisible by $13$ and any number similar to $N$ is not divisible by $13$.

2010 Bosnia And Herzegovina - Regional Olympiad, 3

If $a$ and $b$ are positive integers such that $ab \mid a^2+b^2$ prove that $a=b$

2009 Costa Rica - Final Round, 4

Show that the number $ 3^{{4}^{5}} \plus{} 4^{{5}^{6}}$ can be expresed as the product of two integers greater than $ 10^{2009}$

2012 Pre - Vietnam Mathematical Olympiad, 1

Let $n \geq 2$ be a positive integer. Suppose there exist non-negative integers ${n_1},{n_2},\ldots,{n_k}$ such that $2^n - 1 \mid \sum_{i = 1}^k {{2^{{n_i}}}}$. Prove that $k \ge n$.

2023 China Western Mathematical Olympiad, 7

For positive integers $x, y, $ $r_x(y)$ to represent the smallest positive integer $ r $ such that $ r \equiv y(\text{mod x})$ .For any positive integers $a, b, n ,$ Prove that $$\sum_{i=1}^{n} r_b(a i)\leq \frac{n(a+b)}{2}$$

EMCC Team Rounds, 2015

[b]p1.[/b] Nicky is studying biology and has a tank of $17$ lizards. In one day, he can either remove $5$ lizards or add $2$ lizards to his tank. What is the minimum number of days necessary for Nicky to get rid of all of the lizards from his tank? [b]p2.[/b] What is the maximum number of spheres with radius $1$ that can fit into a sphere with radius $2$? [b]p3.[/b] A positive integer $x$ is sunny if $3x$ has more digits than $x$. If all sunny numbers are written in increasing order, what is the $50$th number written? [b]p4.[/b] Quadrilateral $ABCD$ satisfies $AB = 4$, $BC = 5$, $DA = 4$, $\angle DAB = 60^o$, and $\angle ABC = 150^o$. Find the area of $ABCD$. [b]p5. [/b]Totoro wants to cut a $3$ meter long bar of mixed metals into two parts with equal monetary value. The left meter is bronze, worth $10$ zoty per meter, the middle meter is silver, worth $25$ zoty per meter, and the right meter is gold, worth $40$ zoty per meter. How far, in meters, from the left should Totoro make the cut? [b]p6.[/b] If the numbers $x_1, x_2, x_3, x_4$, and $x5$ are a permutation of the numbers $1, 2, 3, 4$, and $5$, compute the maximum possible value of $$|x_1 - x_2| + |x_2 - x_3| + |x_3 - x_4| + |x_4 - x_5|.$$ [b]p7.[/b] In a $3 \times 4$ grid of $12$ squares, find the number of paths from the top left corner to the bottom right corner that satisfy the following two properties: $\bullet$ The path passes through each square exactly once. $\bullet$ Consecutive squares share a side. Two paths are considered distinct if and only if the order in which the twelve squares are visited is different. For instance, in the diagram below, the two paths drawn are considered the same. [img]https://cdn.artofproblemsolving.com/attachments/7/a/bb3471bbde1a8f58a61d9dd69c8527cfece05a.png[/img] [b]p8.[/b] Scott, Demi, and Alex are writing a computer program that is $25$ ines long. Since they are working together on one computer, only one person may type at a time. To encourage collaboration, no person can type two lines in a row, and everyone must type something. If Scott takes $10$ seconds to type one line, Demi takes $15$ seconds, and Alex takes $20$ seconds, at least how long, in seconds, will it take them to finish the program? [b]p9.[/b] A hand of four cards of the form $(c, c, c + 1, c + 1)$ is called a tractor. Vinjai has a deck consisting of four of each of the numbers $7$, $8$, $9$ and $10$. If Vinjai shuffles and draws four cards from his deck, compute the probability that they form a tractor. [b]p10. [/b]The parabola $y = 2x^2$ is the wall of a fortress. Totoro is located at $(0, 4)$ and fires a cannonball in a straight line at the closest point on the wall. Compute the y-coordinate of the point on the wall that the cannonball hits. [b]p11. [/b]How many ways are there to color the squares of a $10$ by $10$ grid with black and white such that in each row and each column there are exactly two black squares and between the two black squares in a given row or column there are exactly [b]4[/b] white squares? Two configurations that are the same under rotations or reflections are considered different. [b]p12.[/b] In rectangle $ABCD$, points $E$ and $F$ are on sides $AB$ and $CD$, respectively, such that $AE = CF > AD$ and $\angle CED = 90^o$. Lines $AF, BF, CE$ and $DE$ enclose a rectangle whose area is $24\%$ of the area of $ABCD$. Compute $\frac{BF}{CE}$ . [b]p13.[/b] Link cuts trees in order to complete a quest. He must cut $3$ Fenwick trees, $3$ Splay trees and $3$ KD trees. If he must also cut 3 trees of the same type in a row at some point during his quest, in how many ways can he cut the trees and complete the quest? (Trees of the same type are indistinguishable.) [b]p14.[/b] Find all ordered pairs (a, b) of positive integers such that $\sqrt{64a + b^2} + 8 = 8\sqrt{a} + b$. [b]p15.[/b] Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle BCD = 108^o$, $\angle CDE = 168^o$ and $AB =BC = CD = DE$. Find the measure of $\angle AEB$ PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Thailand Online MO, 9

The number $1$ is written on the blackboard. At any point, Kornny may pick two (not necessary distinct) of the numbers $a$ and $b$ written on the board and write either $ab$ or $\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}$ on the board as well. Determine all possible numbers that Kornny can write on the board in finitely many steps.

1988 India National Olympiad, 1

Let $ m_1,m_2,m_3,\dots,m_n$ be a rearrangement of the numbers $ 1,2,\dots,n$. Suppose that $ n$ is odd. Prove that the product \[ \left(m_1\minus{}1\right)\left(m_2\minus{}2\right)\cdots \left(m_n\minus{}n\right)\] is an even integer.

1968 Yugoslav Team Selection Test, Problem 2

Let $n>3$ be a positive integer. Prove that $n$ is prime if and only if there exists a positive integer $\alpha$ such that $n!=n(n-1)(\alpha n+1)$.

2023 Thailand Mathematical Olympiad, 1

Let $A$ be set of 20 consecutive positive integers, Which sum and product of elements in $A$ not divisible by 23. Prove that product of elements in $A$ is not perfect square

1962 Swedish Mathematical Competition, 4

Which of the following statements are true? (A) $X$ implies $Y$, or $Y$ implies $X$, where $X$ is the statement, the lines $L_1, L_2, L_3$ lie in a plane, and $Y$ is the statement, each pair of the lines $L_1, L_2, L_3$ intersect. (B) Every sufficiently large integer $n$ satisfies $n = a^4 + b^4$ for some integers a, b. (C) There are real numbers $a_1, a_2,... , a_n$ such that $a_1 \cos x + a_2 \cos 2x +... + a_n \cos nx > 0$ for all real $x$.

2024 ELMO Shortlist, N3

Given a positive integer $k$, find all polynomials $P$ of degree $k$ with integer coefficients such that for all positive integers $n$ where all of $P(n)$, $P(2024n)$, $P(2024^2n)$ are nonzero, we have $$\frac{\gcd(P(2024n), P(2024^2n))}{\gcd(P(n), P(2024n))}=2024^k.$$ [i]Allen Wang[/i]

2015 IMO Shortlist, N5

Find all positive integers $(a,b,c)$ such that $$ab-c,\quad bc-a,\quad ca-b$$ are all powers of $2$. [i]Proposed by Serbia[/i]

2017 Middle European Mathematical Olympiad, 7

Determine all integers $n \geq 2$ such that there exists a permutation $x_0, x_1, \ldots, x_{n - 1}$ of the numbers $0, 1, \ldots, n - 1$ with the property that the $n$ numbers $$x_0, \hspace{0.3cm} x_0 + x_1, \hspace{0.3cm} \ldots, \hspace{0.3cm} x_0 + x_1 + \ldots + x_{n - 1}$$ are pairwise distinct modulo $n$.

2006 MOP Homework, 4

Given a prime number $p > 2$. Find the least $n\in Z_+$, for which every set of $n$ perfect squares not divisible by $p$ contains nonempty subset with product of all it's elements equal to $1\ (\text{mod}\ p)$

2018 Canada National Olympiad, 3

Two positive integers $a$ and $b$ are prime-related if $a = pb$ or $b = pa$ for some prime $p$. Find all positive integers $n$, such that $n$ has at least three divisors, and all the divisors can be arranged without repetition in a circle so that any two adjacent divisors are prime-related. Note that $1$ and $n$ are included as divisors.

2015 Baltic Way, 19

Three pairwairs distinct positive integers $a,b,c,$ with $gcd(a,b,c)=1$, satisfy \[a|(b-c)^2 ,b|(a-c)^2 , c|(a-b)^2\] Prove that there doesnt exist a non-degenerate triangle with side lengths $a,b,c.$

2011 IFYM, Sozopol, 6

Let $\sum_{i=1}^n a_i x_i =0$, $a_i\in \mathbb{Z}$. It is known that however we color $\mathbb{N}$ with finite number of colors, then the upper equation has a solution $x_1,x_2,...,x_n$ in one color. Prove that there is some non-empty sum of its coefficients equal to 0.