Found problems: 15460
2008 JBMO Shortlist, 2
Let $n \ge 2$ be a fixed positive integer. An integer will be called "$n$-free" if it is not a multiple of an $n$-th power of a prime. Let $M$ be an infinite set of rational numbers, such that the product of every $n$ elements of $M$ is an $n$-free integer. Prove that $M$ contains only integers.
1992 Baltic Way, 8
Find all integers satisfying the equation $ 2^x\cdot(4\minus{}x)\equal{}2x\plus{}4$.
2012 Grigore Moisil Intercounty, 2
Let be two positive real numbers $ a,b $ whose product is $ 1$ and whose sum is irrational. Prove that for any natural number $ n\ge 2 $ the epression $ \sqrt[n]{a}+\sqrt[n]{b} $ is irrational.
[i]Râmbu Gheorghe[/i]
2016 Harvard-MIT Mathematics Tournament, 8
For each positive integer $n$ and non-negative integer $k$, define $W(n,k)$ recursively by
\[
W(n,k) =
\begin{cases}
n^n & k = 0 \\
W(W(n,k-1), k-1) & k > 0.
\end{cases}
\]
Find the last three digits in the decimal representation of $W(555,2)$.
2022 Azerbaijan National Mathematical Olympiad, 3
Let $A$ be the set of all triples $(x, y, z)$ of positive integers satisfying $2x^2 + 3y^3 = 4z^4$ .
a) Show that if $(x, y, z) \in A$ then $6$ divides all of $x, y, z$.
b) Show that $A$ is an infinite set.
1967 Leningrad Math Olympiad, grade 7
[b]7.1[/b] Construct a trapezoid given four sides.
[b]7.2[/b] Prove that $$(1 + x + x^2 + ...+ x^{100})(1 + x^{102}) - 102x^{101} \ge 0 .$$
[b]7.3 [/b] In a quadrilateral $ABCD$, $M$ is the midpoint of AB, $N$ is the midpoint of $CD$. Lines $AD$ and BC intersect $MN$ at points $P$ and $Q$, respectively. Prove that if $\angle BQM = \angle APM$ , then $BC=AD$.
[img]https://cdn.artofproblemsolving.com/attachments/a/2/1c3cbc62ee570a823b5f3f8d046da9fbb4b0f2.png[/img]
[b]7.4 / 6.4[/b] Each of the eight given different natural numbers less than $16$. Prove that among their pairwise differences there is at least at least three are the same.
[b]7.5 / 8.4[/b] An entire arc of circle is drawn through the vertices $A$ and $C$ of the rectangle $ABCD$ lying inside the rectangle. Draw a line parallel to $AB$ intersecting $BC$ at point $P$, $AD$ at point $Q$, and the arc $AC$ at point $R$ so that the sum of the areas of the figures $AQR$ and $CPR$ is the smallest.
[img]https://cdn.artofproblemsolving.com/attachments/1/4/9b5a594f82a96d7eff750e15ca6801a5fc0bf1.png[/img]
[b]7.6 / 6.5 [/b]The distance AB is 100 km. From A and B , cyclists simultaneously ride towards each other at speeds of 20 km/h and 30 km/hour accordingly. Together with the first A, a fly flies out with speed 50 km/h, she flies until she meets the cyclist from B, after which she turns around and flies back until she meets the cyclist from A, after which turns around, etc. How many kilometers will the fly fly in the direction from A to B until the cyclists meet?
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988083_1967_leningrad_math_olympiad]here[/url].
2006 Abels Math Contest (Norwegian MO), 3
(a) Let $a$ and $b$ be rational numbers such that line $y = ax + b$ intersects the circle $x^2 + y^2 = 5$ at two different points. Show that if one of the intersections has two rational coordinates, so does the other intersection.
(b) Show that there are infinitely many triples ($k, n, m$) that are such that $k^2 + n^2 = 5m^2$, where $k, n$ and $m$ are integers, and not all three have any in common prime factor.
2022 MMATHS, 10
Define a function $f$ on the positive integers as follows: $f(n) = m$, where $m$ is the least positive integer such that $n$ is a factor of $m^2$. Find the smallest integer $M$ such that $\sqrt{M}$ is both a product of prime numbers, of which there are at least $3$, and a factor of $$\sum_{ d|M} f(d),$$ the sum of $f(d)$ for all positive integers $d$ that divide $M$.
2023 ELMO Shortlist, N3
Let \(a\), \(b\), and \(n\) be positive integers. A lemonade stand owns \(n\) cups, all of which are initially empty. The lemonade stand has a [i]filling machine[/i] and an [i]emptying machine[/i], which operate according to the following rules: [list] [*]If at any moment, \(a\) completely empty cups are available, the filling machine spends the next \(a\) minutes filling those \(a\) cups simultaneously and doing nothing else. [*]If at any moment, \(b\) completely full cups are available, the emptying machine spends the next \(b\) minutes emptying those \(b\) cups simultaneously and doing nothing else. [/list] Suppose that after a sufficiently long time has passed, both the filling machine and emptying machine work without pausing. Find, in terms of \(a\) and \(b\), the least possible value of \(n\).
[i]Proposed by Raymond Feng[/i]
2024 Baltic Way, 19
Does there exist a positive integer $N$ which is divisible by at least $2024$ distinct primes and whose positive divisors $1 = d_1 < d_2 < \ldots < d_k = N$ are such that the number
\[
\frac{d_2}{d_1}+\frac{d_3}{d_2}+\ldots+\frac{d_k}{d_{k-1}}
\]
is an integer?
2010 VJIMC, Problem 4
For every positive integer $n$ let $\sigma(n)$ denote the sum of all its positive divisors. A number $n$ is called weird if $\sigma(n)\ge2n$ and there exists no representation
$$n=d_1+d_2+\ldots+d_r,$$where $r>1$ and $d_1,\ldots,d_r$ are pairwise distinct positive divisors of $n$.
Prove that there are infinitely many weird numbers.
IMSC 2023, 2
There are $n!$ empty baskets in a row, labelled $1, 2, . . . , n!$. Caesar
first puts a stone in every basket. Caesar then puts 2 stones in every second basket.
Caesar continues similarly until he has put $n$ stones into every nth basket. In
other words, for each $i = 1, 2, . . . , n,$ Caesar puts $i$ stones into the baskets labelled
$i, 2i, 3i, . . . , n!.$
Let $x_i$ be the number of stones in basket $i$ after all these steps. Show that
$n! \cdot n^2 \leq \sum_{i=1}^{n!} x_i^2 \leq n! \cdot n^2 \cdot \sum_{i=1}^{n} \frac{1}{i} $
MathLinks Contest 1st, 3
Consider $(f_n)_{n\ge 0}$ the Fibonacci sequence, defined by $f_0 = 0$, $f_1 = 1$, $f_{n+1} = f_n + f_{n-1}$ for all positive integers $n$. Solve the following equation in positive integers $$nf_nf_{n+1} = (f_{n+2} - 1)^2.$$
.
2009 Cuba MO, 5
Prove that there are infinitely many positive integers $n$ such that $\frac{5^n-1}{n+2}$ is an integer.
2022 Harvard-MIT Mathematics Tournament, 1
Let $(a_1, a_2, ..., a_8)$ be a permutation of $(1, 2, ... , 8)$. Find, with proof, the maximum possible number of elements of the set $$\{a_1, a_1 + a_2, ... , a_1 + a_2 + ... + a_8\}$$ that can be perfect squares.
2013 Romania Team Selection Test, 1
Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.
2016 China Northern MO, 3
$m(m>1)$ is an intenger, define $(a_n)$:
$a_0=m,a_{n}=\varphi(a_{n-1})$ for all positive intenger $n$.
If for all nonnegative intenger $k$, $a_{k+1}\mid a_k$, find all $m$ that is not larger than $2016$.
Note: $\varphi(n)$ means Euler Function.
2017 NIMO Problems, 4
For how many positive integers $100 < n \le 10000$ does $\lfloor \sqrt{n-100} \rfloor$ divide $n$?
[i]Proposed by Michael Tang[/i]
ABMC Online Contests, 2023 Dec
[b]p1.[/b] Eric is playing Brawl Stars. If he starts playing at $11:10$ AM, and plays for $2$ hours total, then how many minutes past noon does he stop playing?
[b]p2.[/b] James is making a mosaic. He takes an equilateral triangle and connects the midpoints of its sides. He then takes the center triangle formed by the midsegments and connects the midpoints of its sides. In total, how many equilateral triangles are in James’ mosaic?
[b]p3.[/b] What is the greatest amount of intersections that $3$ circles and $3$ lines can have, given that they all lie on the same plane?
[b]p4.[/b] In the faraway land of Arkesia, there are two types of currencies: Silvers and Gold. Each Silver is worth $7$ dollars while each Gold is worth $17$ dollars. In Daniel’s wallet, the total dollar value of the Silvers is $1$ more than that of the Golds. What is the smallest total dollar value of all of the Silvers and Golds in his wallet?
[b]p5.[/b] A bishop is placed on a random square of a $8$-by-$8$ chessboard. On average, the bishop is able to move to $s$ other squares on the chessboard. Find $4s$.
Note: A bishop is a chess piece that can move diagonally in any direction, as far as it wants.
[b]p6.[/b] Andrew has a certain amount of coins. If he distributes them equally across his $9$ friends, he will have $7$ coins left. If he apportions his coins for each of his $15$ classmates, he will have $13$ coins to spare. If he splits the coins into $4$ boxes for safekeeping, he will have $2$ coins left over. What is the minimum number of coins Andrew could have?
[b]p7.[/b] A regular polygon $P$ has three times as many sides as another regular polygon $Q$. The interior angle of $P$ is $16^o$ greater than the interior angle of $Q$. Compute how many more diagonals $P$ has compared to $Q$.
[b]p8.[/b] In an certain airport, there are three ways to switch between the ground floor and second floor that are 30 meters apart: either stand on an escalator, run on an escalator, or climb the stairs. A family on vacation takes 65 seconds to climb up the stairs. A solo traveller late for their flight takes $25$ seconds to run upwards on the escalator. The amount of time (in seconds) it takes for someone to switch floors by standing on the escalator can be expressed as $\frac{u}{v}$ , where $u$ and $v$ are relatively prime. Find $u + v$.
(Assume everyone has the same running speed, and the speed of running on an escalator is the sum of the speeds of riding the escalator and running on the stairs.)
[b]p9.[/b] Avanish, being the studious child he is, is taking practice tests to improve his score. Avanish has a $60\%$ chance of passing a practice test. However, whenever Avanish passes a test, he becomes more confident and instead has a $70\%$ chance of passing his next immediate test. If Avanish takes $3$ practice tests in a row, the expected number of practice tests Avanish will pass can be expressed as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime. Find $a + b$.
[b]p10.[/b] Triangle $\vartriangle ABC$ has sides $AB = 51$, $BC = 119$, and $AC = 136$. Point $C$ is reflected over line $\overline{AB}$ to create point $C'$. Next, point $B$ is reflected over line $\overline{AC'}$ to create point $B'$. If $[B'C'C]$ can be expressed in the form of $a\sqrt{b}$, where $b$ is not divisible by any perfect square besides $1$, find $a + b$.
[b]p11[/b]. Define the following infinite sequence $s$: $$s = \left\{\frac{1}{1},\frac{1}{1 + 3},\frac{1}{1 + 3 + 6}, ... ,\frac{1}{1 + 3 + 6 + ...+ t_k},...\right\},$$
where $t_k$ denotes the $k$th triangular number. The sum of the first $2024$ terms of $s$, denoted $S$, can be
expressed as $$S = 3 \left(\frac{1}{2}+\frac{1}{a}-\frac{1}{b}\right),$$ where $a$ and $b$ are positive integers. Find the minimal possible value of $a + b$.
[b]p12.[/b] Omar writes the numbers from $1$ to $1296$ on a whiteboard and then converts each of them into base $6$. Find the sum of all of the digits written on the whiteboard (in base $10$), including both the base $10$ and base $6$ numbers.
[b]p13.[/b] A mountain number is a number in a list that is greater than the number to its left and right. Let $N$ be the amount of lists created from the integers $1$ - $100$ such that each list only has one mountain number. $N$ can be expressed as
$$N = 2^a(2^b - c^2),$$
where $a$, $b$ and $c$ are positive integers and $c$ is not divisible by $2$. Find $a + b+c$.
(The numbers at the beginning or end of a list are not considered mountain numbers.)[hide]Original problem was voided because the original format of the answer didn't match the result's format. So I changed it in the wording, in order the problem to be correct[/hide]
[b]p14.[/b] A circle $\omega$ with center $O$ has a radius of $25$. Chords $\overline{AB}$ and $\overline{CD}$ are drawn in $\omega$ , intersecting at $X$ such that $\angle BXC = 60^o$ and $AX > BX$. Given that the shortest distance of $O$ with $\overline{AB}$ and $\overline{CD}$ is $7$ and $15$ respectively, the length of $BX$ can be expressed as $x - \frac{y}{\sqrt{z}}$ , where $x$, $y$, and $z$ are positive integers such that $z$ is not divisible by any perfect square. Find $x + y + z.$ [hide]two answers were considered correct according to configuration[/hide]
[b]p15.[/b] How many ways are there to split the first $10$ natural numbers into $n$ sets (with $n \ge 1$) such that all the numbers are used and each set has the same average?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 Putnam, B1
Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers
$c_nr, c_nr^2+c_{n-1}r, c_nr^3+c_{n-1}r^2+c_{n-1}r, \dots, c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$
are all integers.
2014 Contests, 4
Let $n$ and $b$ be positive integers. We say $n$ is $b$-discerning if there exists a set consisting of $n$ different positive integers less than $b$ that has no two different subsets $U$ and $V$ such that the sum of all elements in $U$ equals the sum of all elements in $V$.
(a) Prove that $8$ is $100$-discerning.
(b) Prove that $9$ is not $100$-discerning.
[i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]
1974 IMO Longlists, 6
Prove that the product of two natural numbers with their sum cannot be the third power of a natural number.
2024 Mexican Girls' Contest, 8
Find all positive integers \(n\) such that among the \(n\) numbers
\[ 2n + 1, \, 2^2 n + 1, \, \ldots, \, 2^n n + 1 \]
there are \(n\), \(n - 1\), or \(n - 2\) primes.
2010 Junior Balkan Team Selection Tests - Romania, 1
Let $p$ be a prime number, $p> 5$. Determine the non-zero natural numbers $x$ with the property that $5p + x$ divides $5p ^ n + x ^ n$, whatever $n \in N ^ {*} $.
MathLinks Contest 3rd, 2
Let $a_1, a_2, ..., a_{2004}$ be integer numbers such that for all positive integers $n$ the number $A_n = a^n_1 + a^n_2 + ...+ a^n_{2004}$ is a perfect square. What is the minimal number of zeros within the $2004$ numbers?