Found problems: 15460
2023 Puerto Rico Team Selection Test, 5
Six fruit baskets contain peaches, apples and pears. The number of peaches in each basket is equal to the total number of apples in the other baskets. The number of apples in each basket is equal to the total number of pears in the other baskets.
(a) Find a way to place $31$ fruits in the baskets, satisfying the conditions of the statement.
(b) Explain why the total number of fruits must always be multiple of $31$.
Russian TST 2022, P3
Let $n = 2k + 1$ be an odd positive integer, and $m$ be an integer realtively prime to $n{}$. For each $j =1,2,\ldots,k$ we define $p_j$ as the unique integer from the interval $[-k, k]$ congruent to $m\cdot j$ modulo $n{}$. Prove that there are equally many pairs $(i,j)$ for which $1\leqslant i<j\leqslant k$ which satisfy $|p_i|>|p_j|$ as those which satisfy $p_ip_j<0$.
2012 ELMO Shortlist, 6
Prove that if $a$ and $b$ are positive integers and $ab>1$, then
\[\left\lfloor\frac{(a-b)^2-1}{ab}\right\rfloor=\left\lfloor\frac{(a-b)^2-1}{ab-1}\right\rfloor.\]Here $\lfloor x\rfloor$ denotes the greatest integer not exceeding $x$.
[i]Calvin Deng.[/i]
2020 Nordic, 1
For a positive integer $n$, denote by $g(n)$ the number of strictly ascending triples chosen from the set $\{1, 2, ..., n\}$. Find the least positive integer $n$ such that the following holds:[i] The number $g(n)$ can be written as the product of three different prime numbers which are (not necessarily consecutive) members in an arithmetic progression with common difference $336$.[/i]
2021 IMO Shortlist, N5
Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2021 Bangladesh Mathematical Olympiad, Problem 9
A positive integer $n$ is called nice if it has at least $3$ proper divisors and it is equal to the sum of its three largest proper divisors. For example, $6$ is nice because its largest proper divisors are $3,2,1$ and $6=3+2+1$. Find the number of nice integers not greater than $3000$.
2001 Junior Balkan Team Selection Tests - Romania, 1
Let $n$ be a non-negative integer. Find all non-negative integers $a,b,c,d$ such that
\[a^2+b^2+c^2+d^2=7\cdot 4^n\]
2021 CMIMC, 2.5 1.2
Suppose there are $160$ pigeons and $n$ holes. The $1$st pigeon flies to the $1$st hole, the $2$nd pigeon flies to the $4$th hole, and so on, such that the $i$th pigeon flies to the $(i^2\text{ mod }n)$th hole, where $k\text{ mod }n$ is the remainder when $k$ is divided by $n$. What is minimum $n$ such that there is at most one pigeon per hole?
[i]Proposed by Christina Yao[/i]
1967 Putnam, B4
a) A certain locker room contains $n$ lockers numbered $1,2,\ldots,n$ and all are originally locked. An attendant performs a sequence of operations $T_1, T_2 ,\ldots, T_n$, whereby with the operation $T_k$ the state of those lockers whose number is divisible by $k$ is swapped. After all $n$ operations have been performed, it is observed that all lockers whose number is a perfect square (and only those lockers) are open. Prove this.
b) Investigate in a meaningful mathematical way a procedure or set of operations similar to those above which will produce the set of cubes, or the set of numbers of the form $2 m^2 $, or the set of numbers of the form $m^2 +1$, or some nontrivial similar set of your own selection.
ABMC Speed Rounds, 2023
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$.
[b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey?
[b]p3.[/b] What is the remainder when $20232023$ is divided by $50$?
[b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make?
[b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p7.[/b] What is the sum of the perfect square divisors of $640$?
[b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible?
[b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added?
[b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$.
[b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them?
[b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$.
[b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)?
[b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$?
[b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$.
[b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$.
[b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values.
[b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number?
[b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other?
[b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$.
[b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$.
Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function.
[b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$.
Note: $[ABCD]$ denotes the area of the polygon $ABCD$.
[b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$.
[b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 NIMO Summer Contest, 7
Let $P(x) = x^2 - 20x - 11$. If $a$ and $b$ are natural numbers such that $a$ is composite, $\gcd(a, b) = 1$, and $P(a) = P(b)$, compute $ab$.
Note: $\gcd(m, n)$ denotes the greatest common divisor of $m$ and $n$.
[i]Proposed by Aaron Lin
[/i]
2013 Greece Team Selection Test, 1
Find all pairs of non-negative integers $(m,n)$ satisfying $\frac{n(n+2)}{4}=m^4+m^2-m+1$
2020 USA IMO Team Selection Test, 5
Find all integers $n \ge 2$ for which there exists an integer $m$ and a polynomial $P(x)$ with integer coefficients satisfying the following three conditions: [list] [*]$m > 1$ and $\gcd(m,n) = 1$; [*]the numbers $P(0)$, $P^2(0)$, $\ldots$, $P^{m-1}(0)$ are not divisible by $n$; and [*]$P^m(0)$ is divisible by $n$. [/list] Here $P^k$ means $P$ applied $k$ times, so $P^1(0) = P(0)$, $P^2(0) = P(P(0))$, etc.
[i]Carl Schildkraut[/i]
1979 Czech And Slovak Olympiad IIIA, 1
Let $n$ be a given natural number. Determine the number of all orderer triples $(x, y, z)$ of non-negative integers $x, y, z$ that satisfy the equation
$$x + 2y + 5z=10n.$$
2024 JBMO TST - Turkey, 5
Find all positive integer values of $n$ such that the value of the
$$\frac{2^{n!}-1}{2^n-1}$$
is a square of an integer.
2023 China Team Selection Test, P4
Given $m,n\in\mathbb N_+,$ define
$$S(m,n)=\left\{(a,b)\in\mathbb N_+^2\mid 1\leq a\leq m,1\leq b\leq n,\gcd (a,b)=1\right\}.$$
Prove that: for $\forall d,r\in\mathbb N_+,$ there exists $m,n\in\mathbb N_+,m,n\geq d$ and $\left|S(m,n)\right|\equiv r\pmod d.$
2021 Francophone Mathematical Olympiad, 4
Let $\mathbb{N}_{\ge 1}$ be the set of positive integers.
Find all functions $f \colon \mathbb{N}_{\ge 1} \to \mathbb{N}_{\ge 1}$ such that, for all positive integers $m$ and $n$:
(a) $n = \left(f(2n)-f(n)\right)\left(2 f(n) - f(2n)\right)$,
(b)$f(m)f(n) - f(mn) = \left(f(2m)-f(m)\right)\left(2 f(n) - f(2n)\right) + \left(f(2n)-f(n)\right)\left(2 f(m) - f(2m)\right)$,
(c) $m-n$ divides $f(2m)-f(2n)$ if $m$ and $n$ are distinct odd prime numbers.
2020 Thailand TST, 4
Find all triples $(a, b, c)$ of positive integers such that $a^3 + b^3 + c^3 = (abc)^2$.
EMCC Team Rounds, 2024
[b]p1.[/b] Warren interrogates the $25$ members of his cabinet, each of whom always lies or always tells the truth. He asks them all, “How many of you always lie?” He receives every integer answer from $1$ to $25$ exactly once. Find the actual number of liars in his cabinet.
[b]p2.[/b] Abraham thinks of distinct nonzero digits $E$, $M$, and $C$ such that $E +M = \overline{CC}$.
Help him evaluate the sum of the two digit numbers $\overline{EC}$ and $\overline{MC}$. (Note that $\overline{CC}$, $\overline{EC}$, and $\overline{MC}$ are read as two-digit numbers.)
[b]p3.[/b] Let $\omega$, $\Omega$, $\Gamma$ be concentric circles such that $\Gamma$ is inside $\Omega$ and $\Omega$ is inside $\omega$. Points $A,B,C$ on $\omega$ and $D,E$ on $\Omega$ are chosen such that line $AB$ is tangent to $\Omega$, line $AC$ is tangent to $\Gamma$, and line $DE$ is tangent to $\Gamma$. If $AB = 21$ and $AC = 29$, find $DE$.
[b]p4.[/b] Let $a$, $b$, and $c$ be three prime numbers such that $a + b = c$. If the average of two of the three primes is four less than four times the fourth power of the last, find the second-largest of the three primes.
[b]p5.[/b] At Stillwells Ice Cream, customers must choose one type of scoop and two different types of toppings. There are currently $630$ different combinations a customer could order. If another topping is added to the menu, there would be $840$ different combinations. If, instead, another type of scoop were added to the menu, compute the number of different combinations there would be.
[b]p6.[/b] Eleanor the ant takes a path from $(0, 0)$ to $(20, 24)$, traveling either one unit right or one unit up each second. She records every lattice point she passes through, including the starting and ending point. If the sum of all the $x$-coordinates she records is $271$, compute the sum of all the $y$-coordinates. (A lattice point is a point with integer coordinates.)
[b]p7.[/b] Teddy owns a square patch of desert. He builds a dam in a straight line across the square, splitting the square into two trapezoids. The perimeters of the trapezoids are$ 64$ miles and $76$ miles, and their areas differ by $135$ square miles. Find, in miles, the length of the segment that divides them.
[b]p8.[/b] Michelle is playing Spot-It with a magical deck of $10$ cards. Each card has $10$ distinct symbols on it, and every pair of cards shares exactly $1$ symbol. Find the minimum number of distinct symbols on all of the cards in total.
[b]p9.[/b] Define the function $f(n) = \frac{1}{2^n} + \frac{1}{3^n} + \frac{1}{4^n} + ...$ for integers $n \ge 2$. Find
$$f(2) + f(4) + f(6) + ... .$$
[b]p10.[/b] There are $9$ indistinguishable ants standing on a $3\times 3$ square grid. Each ant is standing on exactly one square. Compute the number of different ways the ants can stand so that no column or row contains more than $3$ ants.
[b]p11.[/b] Let $s(N)$ denote the sum of the digits of $N$. Compute the sum of all two-digit positive integers $N$ for which $s(N^2) = s(N)^2$.
[b]p12.[/b] Martha has two square sheets of paper, $A$ and $B$. With each sheet, she repeats the following process four times: fold bottom side to top side, fold right side to left side. With sheet $A$, she then makes a cut from the top left corner to the bottom right. With sheet $B$, she makes a cut from the bottom left corner to the top right. Find the total number of pieces of paper yielded from sheets $A$ and sheets $B$.
[img]https://cdn.artofproblemsolving.com/attachments/f/6/ff3a459a135562002aa2c95067f3f01441d626.png[/img]
[b]p13.[/b] Let $x$ and $y$ be positive integers such that gcd $(x^y, y^x) = 2^{28}$. Find the sum of all possible values of min $(x, y)$.
[b]p14.[/b] Convex hexagon $TRUMAN$ has opposite sides parallel. If each side has length $3$ and the area of this hexagon is $5$, compute $$TU \cdot RM \cdot UA \cdot MN \cdot AT \cdot NR.$$
[b]p15.[/b] Let $x$, $y$, and $z$ be positive real numbers satisfying the system $$\begin{cases} x^2 + xy + y^2 = 25\\
y^2 + yz + z^2 = 36 \\
z^2 + zx + x^2 = 49 \end{cases}$$
Compute $x^2 + y^2 + z^2$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Balkan MO Shortlist, A7
Find all integers $n\geq 2$ for which there exist the real numbers $a_k, 1\leq k \leq n$, which are satisfying the following conditions:
\[\sum_{k=1}^n a_k=0, \sum_{k=1}^n a_k^2=1 \text{ and } \sqrt{n}\cdot \Bigr(\sum_{k=1}^n a_k^3\Bigr)=2(b\sqrt{n}-1), \text{ where } b=\max_{1\leq k\leq n} \{a_k\}.\]
2018 Balkan MO Shortlist, N3
Find all primes $p$ and $q$ such that $3p^{q-1}+1$ divides $11^p+17^p$
Proposed by Stanislav Dimitrov,Bulgaria
2022 Auckland Mathematical Olympiad, 11
For which $k$ the number $N = 101 ... 0101$ with $k$ ones is a prime?
2023 Estonia Team Selection Test, 1
Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define
$$x_{k+1} = \begin{cases}
x_k + d &\text{if } a \text{ does not divide } x_k \\
x_k/a & \text{if } a \text{ divides } x_k
\end{cases}$$
Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.
2014 Irish Math Olympiad, 6
Each of the four positive integers $N,N +1,N +2,N +3$ has exactly six positive divisors. There are exactly$ 20$ dierent positive numbers which are exact divisors of at least one of the numbers. One of these is $27$. Find all possible values of $N$.(Both $1$ and $m$ are counted as divisors of the number $m$.)
2008 Mathcenter Contest, 7
For every positive integer $n$, $\sigma(n)$ is equal to the sum of all the positive divisors of $n$ (for example, $\sigma(6)=1+2+3+6=12$) . Find the solution of the equation $$\sigma(p^2)=\sigma(q^b)$$ where $p$ and $q$ are primes where $p>q$ and $b$ are positive integers.
[i](gools)[/i]