Found problems: 15460
2006 Costa Rica - Final Round, 2
Let $n$ be a positive integer, and let $p$ be a prime, such that $n>p$.
Prove that :
\[ \displaystyle \binom np \equiv \left\lfloor\frac{n}{p}\right\rfloor \ \pmod p. \]
2020 Durer Math Competition Finals, 1
Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \] is eventually constant.
[The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]
2004 Romania Team Selection Test, 7
Let $a,b,c$ be 3 integers, $b$ odd, and define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=4$, $x_1=0$, $x_2=2c$, $x_3=3b$ and for all positive integers $n$ we have
\[ x_{n+3} = ax_{n-1}+bx_n + cx_{n+1} . \]
Prove that for all positive integers $m$, and for all primes $p$ the number $x_{p^m}$ is divisible by $p$.
2018 Bosnia And Herzegovina - Regional Olympiad, 1
$a)$ Prove that for all positive integers $n \geq 3$ holds:
$$\binom{n}{1}+\binom{n}{2}+...+\binom{n}{n-1}=2^n-2$$ where $\binom{n}{k}$ , with integer $k$ such that $n \geq k \geq 0$, is binomial coefficent
$b)$ Let $n \geq 3$ be an odd positive integer. Prove that set $A=\left\{ \binom{n}{1},\binom{n}{2},...,\binom{n}{\frac{n-1}{2}} \right\}$ has odd number of odd numbers
2015 Mid-Michigan MO, 7-9
[b]p1.[/b] Thirty players participate in a chess tournament. Every player plays one game with every other player. What maximal number of players can get exactly $5$ points? (any game adds $1$ point to the winner’s score, $0$ points to a loser’s score, in the case of a draw each player obtains $1/2$ point.)
[b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's?
[b]p3.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square?
[b]p4.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from 1 to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number 3? The total number of all obtained points is $264$.
[b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 All-Russian Olympiad Regional Round, 8.5
It is known that the sum of the digits of the natural number $N$ is $100$, and the sum of the digits of the number $5N$ is $50$. Prove that $N$ is even.
ABMC Team Rounds, 2017
[u]Round 1[/u]
[b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$.
[b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$.
Find $x + y$ where both $x$ and $y$ are greater than zero.
[b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have?
[u]Round 2[/u]
[b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells?
[b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team?
[b]2.3.[/b] Find the sum:
$$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$
[u]Round 3[/u]
[b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$?
[b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs.
[b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground.
[u]Round 4[/u]
[b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues?
[b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$.
[b]4.3.[/b] Find the units digit to $2017^{2017!}$.
[u]Round 5[/u]
[b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction.
[b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$.
[b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.)
[u]Round 6[/u]
[b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ?
[b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth?
[b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year?
[u]Round 7[/u]
[b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive.
[b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$.
[b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles
of length $3$.
[u]Round 8[/u]
[b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 AIME Problems, 9
Let $ABC$ be a triangle with sides 3, 4, and 5, and $DEFG$ be a 6-by-7 rectangle. A segment is drawn to divide triangle $ABC$ into a triangle $U_1$ and a trapezoid $V_1$ and another segment is drawn to divide rectangle $DEFG$ into a triangle $U_2$ and a trapezoid $V_2$ such that $U_1$ is similar to $U_2$ and $V_1$ is similar to $V_2$. The minimum value of the area of $U_1$ can be written in the form $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2009 VTRMC, Problem 2
Given that $40!=\overline{abcdef283247897734345611269596115894272pqrstuvwx}$, find $a,b,c,d,e,f,p,q,r,s,t,u,v,w,x$.
2005 Taiwan TST Round 3, 3
Given an integer ${n>1}$, denote by $P_{n}$ the product of all positive integers $x$ less than $n$ and such that $n$ divides ${x^2-1}$. For each ${n>1}$, find the remainder of $P_{n}$ on division by $n$.
[i]Proposed by John Murray, Ireland[/i]
2010 NZMOC Camp Selection Problems, 6
Suppose $a_1, a_2, . . . , a_8$ are eight distinct integers from $\{1, 2, . . . , 16, 17\}$. Show that there is an integer $k > 0$ such that there are at least three different (not necessarily disjoint) pairs $(i, j)$ such that $a_i - a_j = k$.
Also find a set of seven distinct integers from $\{1, 2, . . . , 16, 17\}$ such that there is no integer $k > 0$ with that property.
2016 Dutch Mathematical Olympiad, 3
Find all possible triples $(a, b, c)$ of positive integers with the following properties:
• $gcd(a, b) = gcd(a, c) = gcd(b, c) = 1$,
• $a$ is a divisor of $a + b + c$,
• $b$ is a divisor of $a + b + c$,
• $c$ is a divisor of $a + b + c$.
(Here $gcd(x,y)$ is the greatest common divisor of $x$ and $y$.)
LMT Team Rounds 2021+, B4
Set $S$ contains exactly $36$ elements in the form of $2^m \cdot 5^n$ for integers $ 0 \le m,n \le 5$. Two distinct elements of $S$ are randomly chosen. Given that the probability that their product is divisible by $10^7$ is $a/b$, where $a$ and $b$ are relatively prime positive integers, find $a +b$.
[i]Proposed by Ada Tsui[/i]
2010 Indonesia TST, 3
Let $ \mathbb{Z}$ be the set of all integers. Define the set $ \mathbb{H}$ as follows:
(1). $ \dfrac{1}{2} \in \mathbb{H}$,
(2). if $ x \in \mathbb{H}$, then $ \dfrac{1}{1\plus{}x} \in \mathbb{H}$ and also $ \dfrac{x}{1\plus{}x} \in \mathbb{H}$.
Prove that there exists a bijective function $ f: \mathbb{Z} \rightarrow \mathbb{H}$.
2015 India IMO Training Camp, 2
For a composite number $n$, let $d_n$ denote its largest proper divisor. Show that there are infinitely many $n$ for which $d_n +d_{n+1}$ is a perfect square.
2015 Azerbaijan JBMO TST, 4
Find all integer solutions to the equation $x^2=y^2(x+y^4+2y^2)$ .
2016 Mediterranean Mathematics Olympiad, 4
Determine all integers $n\ge1$ for which the number $n^8+n^6+n^4+4$ is prime.
(Proposed by Gerhard Woeginger, Austria)
2011 Indonesia TST, 4
A prime number $p$ is a [b]moderate[/b] number if for every $2$ positive integers $k > 1$ and $m$, there exists k positive integers $n_1, n_2, ..., n_k $ such that \[ n_1^2+n_2^2+ ... +n_k^2=p^{k+m} \]
If $q$ is the smallest [b]moderate[/b] number, then determine the smallest prime $r$ which is not moderate and $q < r$.
1993 French Mathematical Olympiad, Problem 2
Let $n$ be a given positive integer.
(a) Do there exist $2n+1$ consecutive positive integers $a_0,a_1,\ldots,a_{2n}$ in the ascending order such that $a_0+a_1+\ldots+a_n=a_{n+1}+\ldots+a_{2n}$?
(b) Do there exist consecutive positive integers $a_0,a+1,\ldots,a_{2n}$ in ascending order such that $a_0^2+a_1^2+\ldots+a_n^2=a_{n+1}^2+\ldots+a_{2n}^2$?
(c) Do there exist consecutive positive integers $a_0,a_1,\ldots,a_{2n}$ in ascending order such that $a_0^3+a_1^3+\ldots+a_n^3=a_{n+1}^3+\ldots+a_{2n}^3$?
[hide=Official Hint]You may study the function $f(x)=(x-n)^3+\ldots+x^3-(x+1)^3-\ldots-(x+n)^3$ and prove that the equation $f(x)=0$ has a unique solution $x_n$ with $3n(n+1)<x_n<3n(n+1)+1$. You may use the identity $1^3+2^3+\ldots+n^3=\frac{n^2(n+1)^2}2$.[/hide]
1991 National High School Mathematics League, 10
The remainder of $1991^{2000}$ module $10^6$ is________.
2017 Bulgaria National Olympiad, 4
Find all triples (p,a,m); p is a prime number, $a,m\in \mathbb{N}$, which satisfy: $a\leq 5p^2$ and $(p-1)!+a=p^m$.
2022 Auckland Mathematical Olympiad, 9
Does there exist a function $f(n)$, which maps the set of natural numbers into itself and such that for each natural number $n > 1$ the following equation is satisfied $$f(n) = f(f(n - 1)) + f(f(n + 1))?$$
2013 Hanoi Open Mathematics Competitions, 4
Let $A$ be an even number but not divisible by $10$. The last two digits of $A^{20}$ are:
(A): $46$, (B): $56$, (C): $66$, (D): $76$, (E): None of the above.
2006 Serbia Team Selection Test, 3
Determine all natural numbers $n$ and $k > 1$ such that $k$ divides each of the numbers$\binom{n}{1}$,$\binom{n}{2}$,..........,$\binom{n}{n-1}$
2017 Pan-African Shortlist, N?
Let $n$ be a positive integer.
- Find, in terms of $n$, the number of pairs $(x,y)$ of positive integers that are solutions of the equation : $$x^2-y^2=10^2.30^{2n}$$
- Prove further that this number is never a square