Found problems: 15460
2001 China Western Mathematical Olympiad, 3
Let $ n, m$ be positive integers of different parity, and $ n > m$. Find all integers $ x$ such that $ \frac {x^{2^n} \minus{} 1}{x^{2^m} \minus{} 1}$ is a perfect square.
2019 JBMO Shortlist, N3
Find all prime numbers $p$ and nonnegative integers $x\neq y$ such that $x^4- y^4=p(x^3-y^3)$.
[i]Proposed by Bulgaria[/i]
2008 Gheorghe Vranceanu, 2
Let be some rational numbers with the property that their sum, as well as the product of any two of them is integer. Prove that all these are integers.
2011 Singapore MO Open, 4
Find all polynomials $P(x)$ with real coefficients such that
\[P(a)\in\mathbb{Z}\ \ \ \text{implies that}\ \ \ a\in\mathbb{Z}.\]
1999 Estonia National Olympiad, 1
Find all pairs of integers ($a, b$) such that $a^2 + b = b^{1999}$ .
2021 Denmark MO - Mohr Contest, 3
Georg investigates which integers are expressible in the form $$\pm 1^2 \pm 2^2 \pm 3^2 \pm \dots \pm n^2.$$
For example, the number $3$ can be expressed as $ -1^2 + 2^2$, and the number $-13$ can be expressed as
$+1^2 + 2^2 + 3^2 - 4^2 + 5^2 - 6^2$. Are all integers expressible in this form?
2016 JBMO Shortlist, 4
Find all triplets of integers $(a,b,c)$ such that the number
$$N = \frac{(a-b)(b-c)(c-a)}{2} + 2$$
is a power of $2016$.
(A power of $2016$ is an integer of form $2016^n$,where n is a non-negative integer.)
2009 China Team Selection Test, 6
Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $ 2^m \plus{} 3^n$ or not. where $ m,n$ are nonnegative integers.
2012 Kosovo Team Selection Test, 5
Prove that the equation
\[\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\]
has infinitly many natural solutions
2004 France Team Selection Test, 1
If $n$ is a positive integer, let $A = \{n,n+1,...,n+17 \}$.
Does there exist some values of $n$ for which we can divide $A$ into two disjoints subsets $B$ and $C$ such that the product of the elements of $B$ is equal to the product of the elements of $C$?
2017 Flanders Math Olympiad, 4
For every natural number $n$ we define the derived number $n'$ as follows:
$\bullet$ $0' = 1' = 0$
$\bullet$ if $n$ is prime, then $n' = 1$
$\bullet$ if $n = a \cdot b$, then $n' = a' b + a b'$ .
For example: $15' = 3' 5 + 3 5' = 1\cdot 5 + 3\cdot 1 = 8$.
Determine all natural numbers $n$ for which $n = n'$.
2006 Croatia Team Selection Test, 1
Find all natural numbers that can be expressed in a unique way as a sum of five or less perfect squares.
2002 District Olympiad, 1
Find the number of representations of the number $180$ in the form $180 =x+y+z$, where $x, y, z$ are positive integers that are proportional with some three consecutive positive integers
2021 Stanford Mathematics Tournament, R3
[b]p9.[/b] The frozen yogurt machine outputs yogurt at a rate of $5$ froyo$^3$/second. If the bowl is described by $z = x^2+y^2$ and has height $5$ froyos, how long does it take to fill the bowl with frozen yogurt?
[b]p10.[/b] Prankster Pete and Good Neighbor George visit a street of $2021$ houses (each with individual mailboxes) on alternate nights, such that Prankster Pete visits on night $1$ and Good Neighbor George visits on night $2$, and so on. On each night $n$ that Prankster Pete visits, he drops a packet of glitter in the mailbox of every $n^{th}$ house. On each night $m$ that Good Neighbor George visits, he checks the mailbox of every $m^{th}$ house, and if there is a packet of glitter there, he takes it home and uses it to complete his art project. After the $2021^{th}$ night, Prankster Pete becomes enraged that none of the houses have yet checked their mail. He then picks three mailboxes at random and takes out a single packet of glitter to dump on George’s head, but notices that all of the mailboxes he visited had an odd number of glitter packets before he took one. In how many ways could he have picked these three glitter packets? Assume that each of these three was from a different house, and that he can only visit houses in increasing numerical order.
[b]p11. [/b]The taxi-cab length of a line segment with endpoints $(x_1, y_1)$ and $(x_2, y_2)$ is $|x_1 - x_2| + |y_1- y_2|$. Given a series of straight line segments connected head-to-tail, the taxi-cab length of this path is the sum of the taxi-cab lengths of its line segments. A goat is on a rope of taxi-cab length $\frac72$ tied to the origin, and it can’t enter the house, which is the three unit squares enclosed by $(-2, 0)$,$(0, 0)$,$(0, -2)$,$(-1, -2)$,$(-1, -1)$,$(-2, -1)$. What is the area of the region the goat can reach? (Note: the rope can’t ”curve smoothly”-it must bend into several straight line segments.)
[b]p12.[/b] Parabola $P$, $y = ax^2 + c$ has $a > 0$ and $c < 0$. Circle $C$, which is centered at the origin and lies tangent to $P$ at $P$’s vertex, intersects $P$ at only the vertex. What is the maximum value of a, possibly in terms of $c$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Serbia National Math Olympiad, 4
We call natural number $n$ [i]$crazy$[/i] iff there exist natural numbers $a$, $b >1$ such that $n=a^b+b$. Whether there exist $2014$ consecutive natural numbers among which are $2012$ [i]$crazy$[/i] numbers?
[i]Proposed by Milos Milosavljevic[/i]
2016 China Team Selection Test, 5
Does there exist two infinite positive integer sets $S,T$, such that any positive integer $n$ can be uniquely expressed in the form
$$n=s_1t_1+s_2t_2+\ldots+s_kt_k$$
,where $k$ is a positive integer dependent on $n$, $s_1<\ldots<s_k$ are elements of $S$, $t_1,\ldots, t_k$ are elements of $T$?
2017 Argentina National Olympiad, 5
We will say that a list of positive integers is [i]admissible [/i] if all its numbers are less than or equal to $100$ and their sum is greater than $1810$. Find the smallest positive integer $d$ such that each admissible list can be crossed out some numbers such that the sum of the numbers left uncrossed out is greater than or equal to $1810-d$ and less than or equal to $1810+d$ .
2024 Azerbaijan Senior NMO, 1
Numbers from 1 to 100 are written on the board in ascending order to make the following large number: 12345678910111213...9899100. Then 100 digits of this number are deleted to get the largest possible number. Find the first 10 digits of the number after deletion.
2019 ABMC, Team
[u]Round 1[/u]
[b]1.1.[/b] Suppose a certain menu has $3$ sandwiches and $5$ drinks. How many ways are there to pick a meal so that you have exactly a drink and a sandwich?
[b]1.2.[/b] If $a + b = 4$ and $a + 3b = 222222$, find $10a + b$.
[b]1.3.[/b] Compute $$\left\lfloor \frac{2019 \cdot 2017}{2018} \right\rfloor $$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.
[u]Round 2[/u]
[b]2.1.[/b] Andrew has $10$ water bottles, each of which can hold at most $10$ cups of water. Three bottles are thirty percent filled, five are twenty-four percent filled, and the rest are empty. What is the average amount of water, in cups, contained in the ten water bottles?
[b]2.2.[/b] How many positive integers divide $195$ evenly?
[b]2.3.[/b] Square $A$ has side length $\ell$ and area $128$. Square $B$ has side length $\ell/2$. Find the length of the diagonal of Square $B$.
[u]Round 3[/u]
[b]3.1.[/b] A right triangle with area $96$ is inscribed in a circle. If all the side lengths are positive integers, what is the area of the circle? Express your answer in terms of $\pi$.
[b]3.2.[/b] A circular spinner has four regions labeled $3, 5, 6, 10$. The region labeled $3$ is $1/3$ of the spinner, $5$ is $1/6$ of the spinner, $6$ is $1/10$ of the spinner, and the region labeled $10$ is $2/5$ of the spinner. If the spinner is spun once randomly, what is the expected value of the number on which it lands?
[b]3.3.[/b] Find the integer k such that $k^3 = 8353070389$
[u]Round 4[/u]
[b]4.1.[/b] How many ways are there to arrange the letters in the word [b]zugzwang [/b] such that the two z’s are not consecutive?
[b]4.2.[/b] If $O$ is the circumcenter of $\vartriangle ABC$, $AD$ is the altitude from $A$ to $BC$, $\angle CAB = 66^o$ and $\angle ABC = 44^o$, then what is the measure of $\angle OAD$ ?
[b]4.3.[/b] If $x > 0$ satisfies $x^3 +\frac{1}{x^3} = 18$, find $x^5 +\frac{1}{x^5}$
[u]Round 5[/u]
[b]5.1.[/b] Let $C$ be the answer to Question $3$. Neethen decides to run for school president! To be entered onto the ballot, however, Neethen needs $C + 1$ signatures. Since no one else will support him, Neethen gets the remaining $C$ other signatures through bribery. The situation can be modeled by $k \cdot N = 495$, where $k$ is the number of dollars he gives each person, and $N$ is the number of signatures he will get. How many dollars does Neethen have to bribe each person with to get exactly C signatures?
[b]5.2.[/b] Let $A$ be the answer to Question $1$. With $3A - 1$ total votes, Neethen still comes short in the election, losing to Serena by just $1$ vote. Darn! Neethen sneaks into the ballot room, knowing that if he destroys just two ballots that voted for Serena, he will win the election. How many ways can Neethen choose two ballots to destroy?
[b]5.3.[/b] Let $B$ be the answer to Question $2$. Oh no! Neethen is caught rigging the election by the principal! For his punishment, Neethen needs to run the perimeter of his school three times. The school is modeled by a square of side length $k$ furlongs, where $k$ is an integer. If Neethen runs $B$ feet in total, what is $k + 1$? (Note: one furlong is $1/8$ of a mile).
[u]Round 6[/u]
[b]6.1.[/b] Find the unique real positive solution to the equation $x =\sqrt{6 + 2\sqrt6 + 2x}- \sqrt{6 - 2\sqrt6 - 2x} -\sqrt6$.
[b]6.2.[/b] Consider triangle ABC with $AB = 13$ and $AC = 14$. Point $D$ lies on $BC$, and the lengths of the perpendiculars from $D$ to $AB$ and $AC$ are both $\frac{56}{9}$. Find the largest possible length of $BD$.
[b]6.3.[/b] Let $f(x, y) = \frac{m}{n}$, where $m$ is the smallest positive integer such that $x$ and $y$ divide $m$, and $n$ is the largest positive integer such that $n$ divides both $x$ and $y$. If $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, what is the median of the distinct values that $f(a, b)$ can take, where $a, b \in S$?
[u]Round 7[/u]
[b]7.1.[/b] The polynomial $y = x^4 - 22x^2 - 48x - 23$ can be written in the form $$y = (x - \sqrt{a} - \sqrt{b} - \sqrt{c})(x - \sqrt{a} +\sqrt{b} +\sqrt{c})(x +\sqrt{a} -\sqrt{b} +\sqrt{c})(x +\sqrt{a} +\sqrt{b} -\sqrt{c})$$ for positive integers $a, b, c$ with $a \le b \le c$. Find $(a + b)\cdot c$.
[b]7.2.[/b] Varun is grounded for getting an $F$ in every class. However, because his parents don’t like him, rather than making him stay at home they toss him onto a number line at the number $3$. A wall is placed at $0$ and a door to freedom is placed at $10$. To escape the number line, Varun must reach 10, at which point he walks through the door to freedom. Every $5$ minutes a bell rings, and Varun may walk to a different number, and he may not walk to a different number except when the bell rings. Being an $F$ student, rather than walking straight to the door to freedom, whenever the bell rings Varun just randomly chooses an adjacent integer with equal chance and walks towards it. Whenever he is at $0$ he walks to $ 1$ with a $100$ percent chance. What is the expected number of times Varun will visit $0$ before he escapes through the door to freedom?
[b]7.3.[/b] Let $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ be a set of positive integers such that every element divides $36$ under the condition that $a_1 < a_2 <... < a_6$. Find the probability that one of these chosen sets also satisfies the condition that every $a_i| a_j$ if $i|j$.
[u]Round 8[/u]
[b]8.[/b] How many numbers between $1$ and $100, 000$ can be expressed as the product of at most $3$ distinct primes?
Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.1 |I|}, 13 - \frac{|I-X|}{0.1 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Chile National Olympiad, 2
Let $p$ be a prime number greater than $2$ and let $m, n$ be integers such that: $$\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}.$$ Prove that $p$ divides $m$.
2024 Austrian MO Regional Competition, 4
Let $n$ be a positive integer. Prove that $a(n) = n^5 +5^n$ is divisible by $11$ if and only if $b(n) = n^5 · 5^n +1$ is divisible by $11$.
[i](Walther Janous)[/i]
2017-IMOC, N6
A mouse walks on a plane. At time $i$, it could do nothing or turn right, then it moves $p_i$ meters forward, where $p_i$ is the $i$-th prime. Is it possible that the mouse moves back to the starting point?
2014 Balkan MO Shortlist, N4
A [i]special number[/i] is a positive integer $n$ for which there exists positive integers $a$, $b$, $c$, and $d$ with \[ n = \frac {a^3 + 2b^3} {c^3 + 2d^3}. \] Prove that
i) there are infinitely many special numbers;
ii) $2014$ is not a special number.
[i]Romania[/i]
2023 Saint Petersburg Mathematical Olympiad, 3
The infinite periodic fractions $\frac{a} {b}$ and $\frac{c} {d}$ with $(a, b)=(c, d)=1$ are such that every finite block of digits in the first fraction after the decimal point appears in the second fraction as well (again after the decimal point). Show that $b=d$.
2014 ISI Entrance Examination, 5
Prove that sum of $12$ consecutive integers cannot be a square. Give an example of $11$ consecutive integers whose sum is a perfect square.